Admissibly integral manifolds for semilinear evolution equations
Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 127-163.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of integral (stable, unstable, center) manifolds of admissible classes for the solutions to the semilinear integral equation $u(t)=U(t,s)u(s)+\int _s^tU(t,\xi )f(\xi ,u(\xi ))\,d\xi $ when the evolution family $(U(t,s))_{t\ge s}$ has an exponential trichotomy on a half-line or on the whole line, and the nonlinear forcing term $f$ satisfies the (local or global) $\varphi $-Lipschitz conditions, {\it i.e.,} $\| f(t,x)-f(t,y)\| \le \varphi (t)\| x-y\| $ where $\varphi (t)$ belongs to some classes of admissible function spaces. These manifolds are formed by trajectories of the solutions belonging to admissible function spaces which contain wide classes of function spaces like function spaces of $L_p$ type, the Lorentz spaces $L_{p,q}$ and many other function spaces occurring in interpolation theory. Our main methods involve the Lyapunov–Perron method, rescaling procedures, and techniques using the admissibility of function spaces.
DOI : 10.4064/ap112-2-3
Keywords: prove existence integral stable unstable center manifolds admissible classes solutions semilinear integral equation u int evolution family has exponential trichotomy half line whole line nonlinear forcing term satisfies local global varphi lipschitz conditions f varphi x y where varphi belongs classes admissible function spaces these manifolds formed trajectories solutions belonging admissible function spaces which contain wide classes function spaces function spaces type lorentz spaces many other function spaces occurring interpolation theory main methods involve lyapunov perron method rescaling procedures techniques using admissibility function spaces

Nguyen Thieu Huy 1 ; Vu Thi Ngoc Ha 2

1 Arbeitsgruppe Angewandte Analysis Fachbereich Mathematik Technische Universität Darmstadt Schlossgartenstr. 7 64289 Darmstadt, Germany and School of Applied Mathematics and Informatics Hanoi University of Science and Technology Vien Toan ung dung va Tin hoc Dai hoc Bach khoa Hanoi 1 Dai Co Viet, Hanoi, Vietnam
2 School of Applied Mathematics and Informatics Hanoi University of Science and Technology Vien Toan ung dung va Tin hoc Dai hoc Bach khoa Hanoi 1 Dai Co Viet, Hanoi, Vietnam
@article{10_4064_ap112_2_3,
     author = {Nguyen Thieu Huy and Vu Thi Ngoc Ha},
     title = {Admissibly integral manifolds for
 semilinear evolution equations},
     journal = {Annales Polonici Mathematici},
     pages = {127--163},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2014},
     doi = {10.4064/ap112-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-3/}
}
TY  - JOUR
AU  - Nguyen Thieu Huy
AU  - Vu Thi Ngoc Ha
TI  - Admissibly integral manifolds for
 semilinear evolution equations
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 127
EP  - 163
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-3/
DO  - 10.4064/ap112-2-3
LA  - en
ID  - 10_4064_ap112_2_3
ER  - 
%0 Journal Article
%A Nguyen Thieu Huy
%A Vu Thi Ngoc Ha
%T Admissibly integral manifolds for
 semilinear evolution equations
%J Annales Polonici Mathematici
%D 2014
%P 127-163
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-3/
%R 10.4064/ap112-2-3
%G en
%F 10_4064_ap112_2_3
Nguyen Thieu Huy; Vu Thi Ngoc Ha. Admissibly integral manifolds for
 semilinear evolution equations. Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 127-163. doi : 10.4064/ap112-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-3/

Cité par Sources :