Some properties of para-Kähler–Walker metrics
Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 115-125
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A Walker $4$-manifold is a pseudo-Riemannian manifold $(M_{4} ,g)$ of neutral signature, which admits a field of parallel null $2$-planes. We study almost paracomplex structures on $4$-dimensional para-Kähler–Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein $4$-manifold is a special case of our constructions.
Mots-clés :
walker manifold pseudo riemannian manifold neutral signature which admits field parallel null planes study almost paracomplex structures dimensional para k hler walker manifolds particular obtain conditions under which these almost paracomplex structures integrable corresponding para k hler forms symplectic peteans example nonflat indefinite hler einstein manifold special constructions
Affiliations des auteurs :
Mustafa Özkan 1 ; Murat İşcan 2
@article{10_4064_ap112_2_2,
author = {Mustafa \"Ozkan and Murat \.I\c{s}can},
title = {Some properties of {para-K\"ahler{\textendash}Walker} metrics},
journal = {Annales Polonici Mathematici},
pages = {115--125},
year = {2014},
volume = {112},
number = {2},
doi = {10.4064/ap112-2-2},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-2-2/}
}
Mustafa Özkan; Murat İşcan. Some properties of para-Kähler–Walker metrics. Annales Polonici Mathematici, Tome 112 (2014) no. 2, pp. 115-125. doi: 10.4064/ap112-2-2
Cité par Sources :