Rigidity of noncompact manifolds with cyclic parallel Ricci curvature
Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 101-108
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if $M$ is a complete noncompact Riemannian manifold whose Ricci tensor is cyclic parallel and whose scalar curvature is nonpositive, then $M$ is Einstein, provided the Sobolev constant is positive and an integral inequality is satisfied.
Keywords:
prove complete noncompact riemannian manifold whose ricci tensor cyclic parallel whose scalar curvature nonpositive einstein provided sobolev constant positive integral inequality satisfied
Affiliations des auteurs :
Yi Hua Deng 1
@article{10_4064_ap112_1_8,
author = {Yi Hua Deng},
title = {Rigidity of noncompact manifolds with cyclic parallel {Ricci} curvature},
journal = {Annales Polonici Mathematici},
pages = {101--108},
year = {2014},
volume = {112},
number = {1},
doi = {10.4064/ap112-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-8/}
}
Yi Hua Deng. Rigidity of noncompact manifolds with cyclic parallel Ricci curvature. Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 101-108. doi: 10.4064/ap112-1-8
Cité par Sources :