Rigidity of noncompact manifolds with cyclic parallel Ricci curvature
Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 101-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $M$ is a complete noncompact Riemannian manifold whose Ricci tensor is cyclic parallel and whose scalar curvature is nonpositive, then $M$ is Einstein, provided the Sobolev constant is positive and an integral inequality is satisfied.
DOI : 10.4064/ap112-1-8
Keywords: prove complete noncompact riemannian manifold whose ricci tensor cyclic parallel whose scalar curvature nonpositive einstein provided sobolev constant positive integral inequality satisfied

Yi Hua Deng 1

1 Department of Mathematics and Computational Science Hengyang Normal University 421002 Hengyang, China
@article{10_4064_ap112_1_8,
     author = {Yi Hua Deng},
     title = {Rigidity of noncompact manifolds with cyclic parallel {Ricci} curvature},
     journal = {Annales Polonici Mathematici},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2014},
     doi = {10.4064/ap112-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-8/}
}
TY  - JOUR
AU  - Yi Hua Deng
TI  - Rigidity of noncompact manifolds with cyclic parallel Ricci curvature
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 101
EP  - 108
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-8/
DO  - 10.4064/ap112-1-8
LA  - en
ID  - 10_4064_ap112_1_8
ER  - 
%0 Journal Article
%A Yi Hua Deng
%T Rigidity of noncompact manifolds with cyclic parallel Ricci curvature
%J Annales Polonici Mathematici
%D 2014
%P 101-108
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-8/
%R 10.4064/ap112-1-8
%G en
%F 10_4064_ap112_1_8
Yi Hua Deng. Rigidity of noncompact manifolds with cyclic parallel Ricci curvature. Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 101-108. doi : 10.4064/ap112-1-8. http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-8/

Cité par Sources :