Complete pluripolar graphs in ${\mathbb C}^N$
Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 85-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $F$ be the Cartesian product of $N$ closed sets in $\mathbb C$. We prove that there exists a function $g$ which is continuous on $F$ and holomorphic on the interior of $F$ such that $\varGamma _g (F):=\{(z, g(z)): z \in F\}$ is complete pluripolar in $\mathbb C^{N+1}$. Using this result, we show that if $D$ is an analytic polyhedron then there exists a bounded holomorphic function $g$ such that $\varGamma _g (D)$ is complete pluripolar in $\mathbb C^{N+1}$. These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math. 84 (2004), 75–86] and Levenberg, Martin and Poletsky [Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515–532].
DOI : 10.4064/ap112-1-7
Keywords: cartesian product closed sets mathbb prove there exists function which continuous holomorphic interior vargamma complete pluripolar mathbb using result analytic polyhedron there exists bounded holomorphic function vargamma complete pluripolar mathbb these results high dimensional analogs previous due edlund complete pluripolar curves graphs ann polon math levenberg martin poletsky analytic disks pluripolar sets indiana univ math

Nguyen Quang Dieu 1 ; Phung Van Manh 1

1 Hanoi National University of Education 136 Xuan Thuy Street Cau Giay, Hanoi, Vietnam
@article{10_4064_ap112_1_7,
     author = {Nguyen Quang Dieu and Phung Van Manh},
     title = {Complete pluripolar graphs in ${\mathbb C}^N$},
     journal = {Annales Polonici Mathematici},
     pages = {85--100},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2014},
     doi = {10.4064/ap112-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-7/}
}
TY  - JOUR
AU  - Nguyen Quang Dieu
AU  - Phung Van Manh
TI  - Complete pluripolar graphs in ${\mathbb C}^N$
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 85
EP  - 100
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-7/
DO  - 10.4064/ap112-1-7
LA  - en
ID  - 10_4064_ap112_1_7
ER  - 
%0 Journal Article
%A Nguyen Quang Dieu
%A Phung Van Manh
%T Complete pluripolar graphs in ${\mathbb C}^N$
%J Annales Polonici Mathematici
%D 2014
%P 85-100
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-7/
%R 10.4064/ap112-1-7
%G en
%F 10_4064_ap112_1_7
Nguyen Quang Dieu; Phung Van Manh. Complete pluripolar graphs in ${\mathbb C}^N$. Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 85-100. doi : 10.4064/ap112-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-7/

Cité par Sources :