Involutions of real intervals
Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 25-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper shows a simple construction of continuous involutions of real intervals in terms of continuous even functions. We also study smooth involutions defined by symmetric equations. Finally, we review some applications, in particular a characterization of isochronous potentials by means of smooth involutions.
DOI : 10.4064/ap112-1-2
Keywords: paper shows simple construction continuous involutions real intervals terms continuous even functions study smooth involutions defined symmetric equations finally review applications particular characterization isochronous potentials means smooth involutions

Gaetano Zampieri 1

1 Dipartimento di Informatica Università di Verona Strada Le Grazie 15 37134 Verona, Italy
@article{10_4064_ap112_1_2,
     author = {Gaetano Zampieri},
     title = {Involutions of real intervals},
     journal = {Annales Polonici Mathematici},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2014},
     doi = {10.4064/ap112-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-2/}
}
TY  - JOUR
AU  - Gaetano Zampieri
TI  - Involutions of real intervals
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 25
EP  - 35
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-2/
DO  - 10.4064/ap112-1-2
LA  - en
ID  - 10_4064_ap112_1_2
ER  - 
%0 Journal Article
%A Gaetano Zampieri
%T Involutions of real intervals
%J Annales Polonici Mathematici
%D 2014
%P 25-35
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-2/
%R 10.4064/ap112-1-2
%G en
%F 10_4064_ap112_1_2
Gaetano Zampieri. Involutions of real intervals. Annales Polonici Mathematici, Tome 112 (2014) no. 1, pp. 25-35. doi : 10.4064/ap112-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ap112-1-2/

Cité par Sources :