Sets with the Bernstein and generalized Markov properties
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 259-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is known that for $C^{\infty }$ determining sets Markov's property is equivalent to Bernstein's property. We are interested in finding a generalization of this fact for sets which are not $C^{\infty }$ determining. In this paper we give examples of sets which are not $C^{\infty }$ determining, but have the Bernstein and generalized Markov properties.
DOI : 10.4064/ap111-3-4
Keywords: known infty determining sets markovs property equivalent bernsteins property interested finding generalization sets which infty determining paper examples sets which infty determining have bernstein generalized markov properties

Mirosław Baran 1 ; Agnieszka Kowalska 2

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
2 Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland
@article{10_4064_ap111_3_4,
     author = {Miros{\l}aw Baran and Agnieszka Kowalska},
     title = {Sets with the {Bernstein} and generalized {Markov} properties},
     journal = {Annales Polonici Mathematici},
     pages = {259--270},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2014},
     doi = {10.4064/ap111-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/}
}
TY  - JOUR
AU  - Mirosław Baran
AU  - Agnieszka Kowalska
TI  - Sets with the Bernstein and generalized Markov properties
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 259
EP  - 270
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/
DO  - 10.4064/ap111-3-4
LA  - en
ID  - 10_4064_ap111_3_4
ER  - 
%0 Journal Article
%A Mirosław Baran
%A Agnieszka Kowalska
%T Sets with the Bernstein and generalized Markov properties
%J Annales Polonici Mathematici
%D 2014
%P 259-270
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/
%R 10.4064/ap111-3-4
%G en
%F 10_4064_ap111_3_4
Mirosław Baran; Agnieszka Kowalska. Sets with the Bernstein and generalized Markov properties. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 259-270. doi : 10.4064/ap111-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/

Cité par Sources :