1Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland 2Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 259-270
It is known that for $C^{\infty }$ determining sets Markov's property is equivalent to Bernstein's property. We are interested in finding a generalization of this fact for sets which are not $C^{\infty }$ determining. In this paper we give examples of sets which are not $C^{\infty }$ determining, but have the Bernstein and generalized Markov properties.
1
Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
2
Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland
@article{10_4064_ap111_3_4,
author = {Miros{\l}aw Baran and Agnieszka Kowalska},
title = {Sets with the {Bernstein} and generalized {Markov} properties},
journal = {Annales Polonici Mathematici},
pages = {259--270},
year = {2014},
volume = {111},
number = {3},
doi = {10.4064/ap111-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/}
}
TY - JOUR
AU - Mirosław Baran
AU - Agnieszka Kowalska
TI - Sets with the Bernstein and generalized Markov properties
JO - Annales Polonici Mathematici
PY - 2014
SP - 259
EP - 270
VL - 111
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/
DO - 10.4064/ap111-3-4
LA - en
ID - 10_4064_ap111_3_4
ER -
%0 Journal Article
%A Mirosław Baran
%A Agnieszka Kowalska
%T Sets with the Bernstein and generalized Markov properties
%J Annales Polonici Mathematici
%D 2014
%P 259-270
%V 111
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-4/
%R 10.4064/ap111-3-4
%G en
%F 10_4064_ap111_3_4
Mirosław Baran; Agnieszka Kowalska. Sets with the Bernstein and generalized Markov properties. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 259-270. doi: 10.4064/ap111-3-4