On the principle of real moduli flexibility: perfect parametrizations
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 245-258
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $V$ be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer $b$ (arbitrarily large), there exists a trivial Nash family $\mathscr {V}=\{V_y\}_{y \in R^b}$ of real algebraic manifolds such that $V_0=V$, $\mathscr {V}$ is an algebraic family of real algebraic manifolds over $y \in R^b \setminus \{0\}$ (possibly singular over $y=0$) and $\mathscr {V}$ is perfectly parametrized by $R^b$ in the sense that $V_y$ is birationally nonisomorphic to $V_z$ for every $y,z \in R^b$ with $y \not =z$. A similar result continues to hold if $V$ is a singular real algebraic set.
Keywords:
real algebraic manifold positive dimension paper every integer arbitrarily large there exists trivial nash family mathscr real algebraic manifolds mathscr algebraic family real algebraic manifolds setminus possibly singular mathscr perfectly parametrized sense birationally nonisomorphic every similar result continues singular real algebraic set
Affiliations des auteurs :
Edoardo Ballico 1 ; Riccardo Ghiloni 1
@article{10_4064_ap111_3_3,
author = {Edoardo Ballico and Riccardo Ghiloni},
title = {On the principle of real moduli flexibility: perfect parametrizations},
journal = {Annales Polonici Mathematici},
pages = {245--258},
publisher = {mathdoc},
volume = {111},
number = {3},
year = {2014},
doi = {10.4064/ap111-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/}
}
TY - JOUR AU - Edoardo Ballico AU - Riccardo Ghiloni TI - On the principle of real moduli flexibility: perfect parametrizations JO - Annales Polonici Mathematici PY - 2014 SP - 245 EP - 258 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/ DO - 10.4064/ap111-3-3 LA - en ID - 10_4064_ap111_3_3 ER -
%0 Journal Article %A Edoardo Ballico %A Riccardo Ghiloni %T On the principle of real moduli flexibility: perfect parametrizations %J Annales Polonici Mathematici %D 2014 %P 245-258 %V 111 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/ %R 10.4064/ap111-3-3 %G en %F 10_4064_ap111_3_3
Edoardo Ballico; Riccardo Ghiloni. On the principle of real moduli flexibility: perfect parametrizations. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 245-258. doi: 10.4064/ap111-3-3
Cité par Sources :