On the principle of real moduli flexibility: perfect parametrizations
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 245-258.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $V$ be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer $b$ (arbitrarily large), there exists a trivial Nash family $\mathscr {V}=\{V_y\}_{y \in R^b}$ of real algebraic manifolds such that $V_0=V$, $\mathscr {V}$ is an algebraic family of real algebraic manifolds over $y \in R^b \setminus \{0\}$ (possibly singular over $y=0$) and $\mathscr {V}$ is perfectly parametrized by $R^b$ in the sense that $V_y$ is birationally nonisomorphic to $V_z$ for every $y,z \in R^b$ with $y \not =z$. A similar result continues to hold if $V$ is a singular real algebraic set.
DOI : 10.4064/ap111-3-3
Keywords: real algebraic manifold positive dimension paper every integer arbitrarily large there exists trivial nash family mathscr real algebraic manifolds mathscr algebraic family real algebraic manifolds setminus possibly singular mathscr perfectly parametrized sense birationally nonisomorphic every similar result continues singular real algebraic set

Edoardo Ballico 1 ; Riccardo Ghiloni 1

1 Department of Mathematics University of Trento 38123 Povo-Trento, Italy
@article{10_4064_ap111_3_3,
     author = {Edoardo Ballico and Riccardo Ghiloni},
     title = {On the principle of real moduli flexibility: perfect parametrizations},
     journal = {Annales Polonici Mathematici},
     pages = {245--258},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2014},
     doi = {10.4064/ap111-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/}
}
TY  - JOUR
AU  - Edoardo Ballico
AU  - Riccardo Ghiloni
TI  - On the principle of real moduli flexibility: perfect parametrizations
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 245
EP  - 258
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/
DO  - 10.4064/ap111-3-3
LA  - en
ID  - 10_4064_ap111_3_3
ER  - 
%0 Journal Article
%A Edoardo Ballico
%A Riccardo Ghiloni
%T On the principle of real moduli flexibility: perfect parametrizations
%J Annales Polonici Mathematici
%D 2014
%P 245-258
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/
%R 10.4064/ap111-3-3
%G en
%F 10_4064_ap111_3_3
Edoardo Ballico; Riccardo Ghiloni. On the principle of real moduli flexibility: perfect parametrizations. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 245-258. doi : 10.4064/ap111-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-3/

Cité par Sources :