Strict plurisubharmonicity of Bergman kernels on generalized annuli
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 237-243
Let $A_\zeta=\varOmega-\overline{\rho(\zeta)\cdot\varOmega}$ be a family
of generalized annuli over a domain $U$. We show that the logarithm
of the Bergman kernel $K_{\zeta}(z)$ of
$A_\zeta$ is plurisubharmonic provided $\rho\in {\rm PSH}(U)$. It is
remarkable that $A_\zeta$ is non-pseudoconvex when the dimension of
$A_\zeta$ is larger than one. For standard annuli in ${\mathbb C}$,
we obtain an interesting formula for $\partial^2 \log
K_{\zeta}/\partial \zeta\partial\bar{\zeta}$, as well as its
boundary behavior.
Keywords:
zeta varomega overline rho zeta cdot varomega family generalized annuli domain logarithm bergman kernel zeta zeta plurisubharmonic provided rho psh remarkable zeta non pseudoconvex dimension zeta larger standard annuli mathbb obtain interesting formula partial log zeta partial zeta partial bar zeta its boundary behavior
Affiliations des auteurs :
Yanyan Wang  1
@article{10_4064_ap111_3_2,
author = {Yanyan Wang},
title = {Strict plurisubharmonicity of {Bergman} kernels on generalized annuli},
journal = {Annales Polonici Mathematici},
pages = {237--243},
year = {2014},
volume = {111},
number = {3},
doi = {10.4064/ap111-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-2/}
}
Yanyan Wang. Strict plurisubharmonicity of Bergman kernels on generalized annuli. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 237-243. doi: 10.4064/ap111-3-2
Cité par Sources :