Strict plurisubharmonicity of Bergman kernels on generalized annuli
Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 237-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A_\zeta=\varOmega-\overline{\rho(\zeta)\cdot\varOmega}$ be a family
of generalized annuli over a domain $U$. We show that the logarithm
of the Bergman kernel $K_{\zeta}(z)$ of
$A_\zeta$ is plurisubharmonic provided $\rho\in {\rm PSH}(U)$. It is
remarkable that $A_\zeta$ is non-pseudoconvex when the dimension of
$A_\zeta$ is larger than one. For standard annuli in ${\mathbb C}$,
we obtain an interesting formula for $\partial^2 \log
K_{\zeta}/\partial \zeta\partial\bar{\zeta}$, as well as its
boundary behavior.
Keywords:
zeta varomega overline rho zeta cdot varomega family generalized annuli domain logarithm bergman kernel zeta zeta plurisubharmonic provided rho psh remarkable zeta non pseudoconvex dimension zeta larger standard annuli mathbb obtain interesting formula partial log zeta partial zeta partial bar zeta its boundary behavior
Affiliations des auteurs :
Yanyan Wang 1
@article{10_4064_ap111_3_2,
author = {Yanyan Wang},
title = {Strict plurisubharmonicity of {Bergman} kernels on generalized annuli},
journal = {Annales Polonici Mathematici},
pages = {237--243},
publisher = {mathdoc},
volume = {111},
number = {3},
year = {2014},
doi = {10.4064/ap111-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-2/}
}
TY - JOUR AU - Yanyan Wang TI - Strict plurisubharmonicity of Bergman kernels on generalized annuli JO - Annales Polonici Mathematici PY - 2014 SP - 237 EP - 243 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-3-2/ DO - 10.4064/ap111-3-2 LA - en ID - 10_4064_ap111_3_2 ER -
Yanyan Wang. Strict plurisubharmonicity of Bergman kernels on generalized annuli. Annales Polonici Mathematici, Tome 111 (2014) no. 3, pp. 237-243. doi: 10.4064/ap111-3-2
Cité par Sources :