Periodic solutions for first order neutral functional differential equations with multiple deviating arguments
Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 197-213.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider first order neutral functional differential equations with multiple deviating arguments of the form $$ (x(t)+Bx(t-\delta))'= g_{0}(t,x(t))+\sum\limits_{k=1}^{n}g_{k}(t,x(t-\tau_{k} (t))) +p(t). $$ By using coincidence degree theory, we establish some sufficient conditions on the existence and uniqueness of periodic solutions for the above equation. Moreover, two examples are given to illustrate the effectiveness of our results.
DOI : 10.4064/ap111-2-7
Keywords: consider first order neutral functional differential equations multiple deviating arguments form t delta sum limits t tau using coincidence degree theory establish sufficient conditions existence uniqueness periodic solutions above equation moreover examples given illustrate effectiveness results

Lequn Peng 1 ; Lijuan Wang 2

1 College of Mathematics and Computer Science Hunan University of Arts and Science Changde, Hunan 415000, P.R. China
2 Nanhu College Jiaxing University Jiaxing, Zhejiang 314001, P.R. China
@article{10_4064_ap111_2_7,
     author = {Lequn Peng and Lijuan Wang},
     title = {Periodic solutions for first order
 neutral functional differential equations
 with multiple deviating arguments},
     journal = {Annales Polonici Mathematici},
     pages = {197--213},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2014},
     doi = {10.4064/ap111-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/}
}
TY  - JOUR
AU  - Lequn Peng
AU  - Lijuan Wang
TI  - Periodic solutions for first order
 neutral functional differential equations
 with multiple deviating arguments
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 197
EP  - 213
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/
DO  - 10.4064/ap111-2-7
LA  - en
ID  - 10_4064_ap111_2_7
ER  - 
%0 Journal Article
%A Lequn Peng
%A Lijuan Wang
%T Periodic solutions for first order
 neutral functional differential equations
 with multiple deviating arguments
%J Annales Polonici Mathematici
%D 2014
%P 197-213
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/
%R 10.4064/ap111-2-7
%G en
%F 10_4064_ap111_2_7
Lequn Peng; Lijuan Wang. Periodic solutions for first order
 neutral functional differential equations
 with multiple deviating arguments. Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 197-213. doi : 10.4064/ap111-2-7. http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/

Cité par Sources :