Periodic solutions for first order
neutral functional differential equations
with multiple deviating arguments
Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 197-213
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider first order neutral
functional differential
equations with multiple deviating arguments of the
form
$$
(x(t)+Bx(t-\delta))'=
g_{0}(t,x(t))+\sum\limits_{k=1}^{n}g_{k}(t,x(t-\tau_{k} (t)))
+p(t).
$$
By using coincidence degree theory, we establish some
sufficient conditions on the existence and uniqueness of periodic
solutions for the above equation. Moreover, two examples are
given to illustrate the effectiveness of our results.
Keywords:
consider first order neutral functional differential equations multiple deviating arguments form t delta sum limits t tau using coincidence degree theory establish sufficient conditions existence uniqueness periodic solutions above equation moreover examples given illustrate effectiveness results
Affiliations des auteurs :
Lequn Peng 1 ; Lijuan Wang 2
@article{10_4064_ap111_2_7,
author = {Lequn Peng and Lijuan Wang},
title = {Periodic solutions for first order
neutral functional differential equations
with multiple deviating arguments},
journal = {Annales Polonici Mathematici},
pages = {197--213},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {2014},
doi = {10.4064/ap111-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/}
}
TY - JOUR AU - Lequn Peng AU - Lijuan Wang TI - Periodic solutions for first order neutral functional differential equations with multiple deviating arguments JO - Annales Polonici Mathematici PY - 2014 SP - 197 EP - 213 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/ DO - 10.4064/ap111-2-7 LA - en ID - 10_4064_ap111_2_7 ER -
%0 Journal Article %A Lequn Peng %A Lijuan Wang %T Periodic solutions for first order neutral functional differential equations with multiple deviating arguments %J Annales Polonici Mathematici %D 2014 %P 197-213 %V 111 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-7/ %R 10.4064/ap111-2-7 %G en %F 10_4064_ap111_2_7
Lequn Peng; Lijuan Wang. Periodic solutions for first order neutral functional differential equations with multiple deviating arguments. Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 197-213. doi: 10.4064/ap111-2-7
Cité par Sources :