Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$
Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 183-195.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This work deals with Feigenbaum's functional equation $$\left\{ \begin{array}{l} h(g(x))=g^p(h(x)),\\ g(0)=1, \quad -1\leq g(x)\leq1 ,\quad x\in[-1,1], \end{array} \right. $$ where $p\geq 2$ is an integer, $g^p$ is the $p$-fold iteration of $g$, and $h$ is a strictly monotone odd continuous function on $[-1,1]$ with $h(0)=0$ and $|h(x)||x|$ ($x\in[-1,1]$, $x\neq 0$). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.
DOI : 10.4064/ap111-2-6
Keywords: work deals feigenbaums functional equation begin array x quad leq leq quad end array right where geq integer p fold iteration strictly monotone odd continuous function neq using constructive method discuss existence continuous unimodal even solutions above equation

Min Zhang 1 ; Jianguo Si 2

1 School of Science China University of Petroleum 266555 Qingdao, Shandong People's Republic of China
2 School of Mathematics Shandong University 250100 Jinan, Shandong People's Republic of China
@article{10_4064_ap111_2_6,
     author = {Min Zhang and Jianguo Si},
     title = {Solutions for the $p$-order {Feigenbaum's} functional equation $h(g(x))=g^{p}(h(x))$},
     journal = {Annales Polonici Mathematici},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2014},
     doi = {10.4064/ap111-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/}
}
TY  - JOUR
AU  - Min Zhang
AU  - Jianguo Si
TI  - Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 183
EP  - 195
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/
DO  - 10.4064/ap111-2-6
LA  - en
ID  - 10_4064_ap111_2_6
ER  - 
%0 Journal Article
%A Min Zhang
%A Jianguo Si
%T Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$
%J Annales Polonici Mathematici
%D 2014
%P 183-195
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/
%R 10.4064/ap111-2-6
%G en
%F 10_4064_ap111_2_6
Min Zhang; Jianguo Si. Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$. Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 183-195. doi : 10.4064/ap111-2-6. http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/

Cité par Sources :