Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Min Zhang 1 ; Jianguo Si 2
@article{10_4064_ap111_2_6, author = {Min Zhang and Jianguo Si}, title = {Solutions for the $p$-order {Feigenbaum's} functional equation $h(g(x))=g^{p}(h(x))$}, journal = {Annales Polonici Mathematici}, pages = {183--195}, publisher = {mathdoc}, volume = {111}, number = {2}, year = {2014}, doi = {10.4064/ap111-2-6}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/} }
TY - JOUR AU - Min Zhang AU - Jianguo Si TI - Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$ JO - Annales Polonici Mathematici PY - 2014 SP - 183 EP - 195 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/ DO - 10.4064/ap111-2-6 LA - en ID - 10_4064_ap111_2_6 ER -
%0 Journal Article %A Min Zhang %A Jianguo Si %T Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$ %J Annales Polonici Mathematici %D 2014 %P 183-195 %V 111 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/ %R 10.4064/ap111-2-6 %G en %F 10_4064_ap111_2_6
Min Zhang; Jianguo Si. Solutions for the $p$-order Feigenbaum's functional equation $h(g(x))=g^{p}(h(x))$. Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 183-195. doi : 10.4064/ap111-2-6. http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-6/
Cité par Sources :