Uniformity of holomorphic families of non-homeomorphic planar Riemann surfaces
Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 165-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show the variation formula for the Schiffer span $s(t)$ for moving Riemann surfaces $R(t)$ with $t\in B=\{t\in \mathbb {C}\mid |t|\rho \}$, and apply it to show the simultaneous uniformization of moving planar Riemann surfaces of class $O_{\rm AD}$.
DOI : 10.4064/ap111-2-5
Keywords: variation formula schiffer span moving riemann surfaces mathbb mid rho apply simultaneous uniformization moving planar riemann surfaces class

Sachiko Hamano 1

1 Department of Mathematics Faculty of Human Development and Culture Fukushima University Kanayagawa, Fukushima, 960-1296 Japan
@article{10_4064_ap111_2_5,
     author = {Sachiko Hamano},
     title = {Uniformity of holomorphic families of non-homeomorphic planar {Riemann} surfaces},
     journal = {Annales Polonici Mathematici},
     pages = {165--181},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2014},
     doi = {10.4064/ap111-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-5/}
}
TY  - JOUR
AU  - Sachiko Hamano
TI  - Uniformity of holomorphic families of non-homeomorphic planar Riemann surfaces
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 165
EP  - 181
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-5/
DO  - 10.4064/ap111-2-5
LA  - en
ID  - 10_4064_ap111_2_5
ER  - 
%0 Journal Article
%A Sachiko Hamano
%T Uniformity of holomorphic families of non-homeomorphic planar Riemann surfaces
%J Annales Polonici Mathematici
%D 2014
%P 165-181
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-5/
%R 10.4064/ap111-2-5
%G en
%F 10_4064_ap111_2_5
Sachiko Hamano. Uniformity of holomorphic families of non-homeomorphic planar Riemann surfaces. Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 165-181. doi : 10.4064/ap111-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-5/

Cité par Sources :