On the stability of compressible
Navier–Stokes–Korteweg equations
Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 149-163
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the compressible Navier–Stokes–Korteweg (N-S-K) equations. Through a remarkable identity, we reveal a relationship between the quantum hydrodynamic system and capillary fluids. Using some interesting inequalities from quantum fluids theory, we prove the stability of weak solutions for the N-S-K equations in the periodic domain $\varOmega =\mathbb {T}^{N}$, when $N=2,3$.
Keywords:
consider compressible navier stokes korteweg n s k equations through remarkable identity reveal relationship between quantum hydrodynamic system capillary fluids using interesting inequalities quantum fluids theory prove stability weak solutions n s k equations periodic domain varomega mathbb
Affiliations des auteurs :
Tong Tang 1 ; Hongjun Gao 2
@article{10_4064_ap111_2_4,
author = {Tong Tang and Hongjun Gao},
title = {On the stability of compressible
{Navier{\textendash}Stokes{\textendash}Korteweg} equations},
journal = {Annales Polonici Mathematici},
pages = {149--163},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {2014},
doi = {10.4064/ap111-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-4/}
}
TY - JOUR AU - Tong Tang AU - Hongjun Gao TI - On the stability of compressible Navier–Stokes–Korteweg equations JO - Annales Polonici Mathematici PY - 2014 SP - 149 EP - 163 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-2-4/ DO - 10.4064/ap111-2-4 LA - en ID - 10_4064_ap111_2_4 ER -
Tong Tang; Hongjun Gao. On the stability of compressible Navier–Stokes–Korteweg equations. Annales Polonici Mathematici, Tome 111 (2014) no. 2, pp. 149-163. doi: 10.4064/ap111-2-4
Cité par Sources :