Variability regions of close-to-convex functions
Annales Polonici Mathematici, Tome 111 (2014) no. 1, pp. 89-105
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
M. Biernacki gave in 1936 concrete forms of the variability regions of $z/f(z)$ and $zf'(z)/f(z)$ of close-to-convex functions $f$ for a fixed $z$ with $|z|1$. The forms are, however, not necessarily convenient to determine the shape of the full variability region of $zf'(z)/f(z)$ over all close-to-convex functions $f$ and all points $z$ with $|z|1.$ We propose a couple of other forms of the variability regions and see that the full variability region of $zf'(z)/f(z)$ is indeed the complex plane minus the origin. We also apply them to study the variability regions of
$\log[z/f(z)]$ and $\log[zf'(z)/f(z)].$
Keywords:
biernacki gave concrete forms variability regions close to convex functions fixed forms however necessarily convenient determine shape full variability region close to convex functions points propose couple other forms variability regions see full variability region indeed complex plane minus origin apply study variability regions log log
Affiliations des auteurs :
Takao Kato 1 ; Toshiyuki Sugawa 2 ; Li-Mei Wang 3
@article{10_4064_ap111_1_7,
author = {Takao Kato and Toshiyuki Sugawa and Li-Mei Wang},
title = {Variability regions of close-to-convex functions},
journal = {Annales Polonici Mathematici},
pages = {89--105},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2014},
doi = {10.4064/ap111-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-7/}
}
TY - JOUR AU - Takao Kato AU - Toshiyuki Sugawa AU - Li-Mei Wang TI - Variability regions of close-to-convex functions JO - Annales Polonici Mathematici PY - 2014 SP - 89 EP - 105 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-7/ DO - 10.4064/ap111-1-7 LA - en ID - 10_4064_ap111_1_7 ER -
Takao Kato; Toshiyuki Sugawa; Li-Mei Wang. Variability regions of close-to-convex functions. Annales Polonici Mathematici, Tome 111 (2014) no. 1, pp. 89-105. doi: 10.4064/ap111-1-7
Cité par Sources :