A note on generalized projections in $c_{0}$
Annales Polonici Mathematici, Tome 111 (2014) no. 1, pp. 59-72
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $V \subset Z$ be two subspaces of a Banach space $X$. We define the set of generalized projections by $$ \mathcal {P}_V(X,Z):=\{ P \in \mathcal {L}(X,Z): P|_V ={\rm id} \} . $$ Now let $X=c_0$ or $l^m_\infty ,$ $Z:=\mathop {\rm ker}f$ for some $f\in X^* $ and $V:=Z\cap l^{n}_\infty $ $(n m).$ The main goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal generalized projection in this case. Also formulas for the relative generalized projection constant and the strong uniqueness constant will be given (cf. J. Blatter and
E. W. Cheney [Ann. Mat. Pura Appl. 101 (1974), 215–227] and G. Lewicki and A. Micek [J. Approx. Theory 162 (2010), 2278–2289] where the case of projections has been considered). We discuss both the real and complex cases.
Keywords:
subset subspaces banach space define set generalized projections mathcal mathcal infty mathop ker * cap infty main paper discuss existence uniqueness strong uniqueness minimal generalized projection formulas relative generalized projection constant strong uniqueness constant given blatter cheney ann mat pura appl lewicki micek approx theory where projections has considered discuss real complex cases
Affiliations des auteurs :
Beata Deręgowska 1 ; Barbara Lewandowska 1
@article{10_4064_ap111_1_5,
author = {Beata Der\k{e}gowska and Barbara Lewandowska},
title = {A note on generalized projections in $c_{0}$},
journal = {Annales Polonici Mathematici},
pages = {59--72},
year = {2014},
volume = {111},
number = {1},
doi = {10.4064/ap111-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-5/}
}
TY - JOUR
AU - Beata Deręgowska
AU - Barbara Lewandowska
TI - A note on generalized projections in $c_{0}$
JO - Annales Polonici Mathematici
PY - 2014
SP - 59
EP - 72
VL - 111
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap111-1-5/
DO - 10.4064/ap111-1-5
LA - en
ID - 10_4064_ap111_1_5
ER -
Beata Deręgowska; Barbara Lewandowska. A note on generalized projections in $c_{0}$. Annales Polonici Mathematici, Tome 111 (2014) no. 1, pp. 59-72. doi: 10.4064/ap111-1-5
Cité par Sources :