1Department of Mathematics Hangzhou Electronic Information Vocational School (Dingqiao campus) Hangzhou, Zhejiang, 310021, P.R. China 2Department of Mathematics University of Kalyani Kalyani, West Bengal 741235, India
Annales Polonici Mathematici, Tome 110 (2014) no. 3, pp. 283-294
We prove a normality criterion for a family of meromorphic functions having multiple zeros which involves sharing of a non-zero value by the product of functions and their linear differential polynomials.
Keywords:
prove normality criterion family meromorphic functions having multiple zeros which involves sharing non zero value product functions their linear differential polynomials
1
Department of Mathematics Hangzhou Electronic Information Vocational School (Dingqiao campus) Hangzhou, Zhejiang, 310021, P.R. China
2
Department of Mathematics University of Kalyani Kalyani, West Bengal 741235, India
@article{10_4064_ap110_3_5,
author = {Shanpeng Zeng and Indrajit Lahiri},
title = {A normality criterion for meromorphic functions having multiple zeros},
journal = {Annales Polonici Mathematici},
pages = {283--294},
year = {2014},
volume = {110},
number = {3},
doi = {10.4064/ap110-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-5/}
}
TY - JOUR
AU - Shanpeng Zeng
AU - Indrajit Lahiri
TI - A normality criterion for meromorphic functions having multiple zeros
JO - Annales Polonici Mathematici
PY - 2014
SP - 283
EP - 294
VL - 110
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-5/
DO - 10.4064/ap110-3-5
LA - en
ID - 10_4064_ap110_3_5
ER -
%0 Journal Article
%A Shanpeng Zeng
%A Indrajit Lahiri
%T A normality criterion for meromorphic functions having multiple zeros
%J Annales Polonici Mathematici
%D 2014
%P 283-294
%V 110
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-5/
%R 10.4064/ap110-3-5
%G en
%F 10_4064_ap110_3_5
Shanpeng Zeng; Indrajit Lahiri. A normality criterion for meromorphic functions having multiple zeros. Annales Polonici Mathematici, Tome 110 (2014) no. 3, pp. 283-294. doi: 10.4064/ap110-3-5