Global uniqueness results for
fractional partial hyperbolic differential equations
with state-dependent delay
Annales Polonici Mathematici, Tome 110 (2014) no. 3, pp. 259-281
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the existence and uniqueness of solutions of hyperbolic fractional order differential equations with state-dependent delay by using a nonlinear alternative of Leray–Schauder type due to Frigon and Granas for contraction maps on Fréchet spaces.
Keywords:
investigate existence uniqueness solutions hyperbolic fractional order differential equations state dependent delay using nonlinear alternative leray schauder type due frigon granas contraction maps chet spaces
Affiliations des auteurs :
Mouffak Benchohra 1 ; Mohamed Hellal 2
@article{10_4064_ap110_3_4,
author = {Mouffak Benchohra and Mohamed Hellal},
title = {Global uniqueness results for
fractional partial hyperbolic differential equations
with state-dependent delay},
journal = {Annales Polonici Mathematici},
pages = {259--281},
publisher = {mathdoc},
volume = {110},
number = {3},
year = {2014},
doi = {10.4064/ap110-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-4/}
}
TY - JOUR AU - Mouffak Benchohra AU - Mohamed Hellal TI - Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay JO - Annales Polonici Mathematici PY - 2014 SP - 259 EP - 281 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-4/ DO - 10.4064/ap110-3-4 LA - en ID - 10_4064_ap110_3_4 ER -
%0 Journal Article %A Mouffak Benchohra %A Mohamed Hellal %T Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay %J Annales Polonici Mathematici %D 2014 %P 259-281 %V 110 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-4/ %R 10.4064/ap110-3-4 %G en %F 10_4064_ap110_3_4
Mouffak Benchohra; Mohamed Hellal. Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay. Annales Polonici Mathematici, Tome 110 (2014) no. 3, pp. 259-281. doi: 10.4064/ap110-3-4
Cité par Sources :