The pluricomplex Green function
on some regular pseudoconvex domains
Annales Polonici Mathematici, Tome 110 (2014) no. 3, pp. 209-226
Let $D$ be a smooth bounded pseudoconvex domain in $\mathbb C^n$ of finite type. We prove an estimate on the pluricomplex Green function $\mathscr G_D(z,w)$ of $D$ that gives quantitative information on how fast the Green function vanishes if the pole $w$ approaches the boundary. Also the Hölder continuity of the Green function is discussed.
Keywords:
smooth bounded pseudoconvex domain mathbb finite type prove estimate pluricomplex green function mathscr w gives quantitative information fast green function vanishes pole approaches boundary lder continuity green function discussed
Affiliations des auteurs :
Gregor Herbort  1
@article{10_4064_ap110_3_1,
author = {Gregor Herbort},
title = {The pluricomplex {Green} function
on some regular pseudoconvex domains},
journal = {Annales Polonici Mathematici},
pages = {209--226},
year = {2014},
volume = {110},
number = {3},
doi = {10.4064/ap110-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-1/}
}
TY - JOUR AU - Gregor Herbort TI - The pluricomplex Green function on some regular pseudoconvex domains JO - Annales Polonici Mathematici PY - 2014 SP - 209 EP - 226 VL - 110 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap110-3-1/ DO - 10.4064/ap110-3-1 LA - en ID - 10_4064_ap110_3_1 ER -
Gregor Herbort. The pluricomplex Green function on some regular pseudoconvex domains. Annales Polonici Mathematici, Tome 110 (2014) no. 3, pp. 209-226. doi: 10.4064/ap110-3-1
Cité par Sources :