Clifford analysis approach to a self-conjugate Cauchy type integral on Ahlfors regular surfaces
Annales Polonici Mathematici, Tome 110 (2014) no. 2, pp. 101-108
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this note, based on a natural isomorphism between the spaces of differential forms and Clifford algebra-valued multi-vector functions, the Cauchy type integral for self-conjugate differential forms in $\mathbb R^n$ is considered.
Keywords:
note based natural isomorphism between spaces differential forms clifford algebra valued multi vector functions cauchy type integral self conjugate differential forms mathbb considered
Affiliations des auteurs :
Ricardo Abreu Blaya 1 ; Juan Bory Reyes 2
@article{10_4064_ap110_2_1,
author = {Ricardo Abreu Blaya and Juan Bory Reyes},
title = {Clifford analysis approach to a self-conjugate {Cauchy} type integral on {Ahlfors} regular surfaces},
journal = {Annales Polonici Mathematici},
pages = {101--108},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {2014},
doi = {10.4064/ap110-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap110-2-1/}
}
TY - JOUR AU - Ricardo Abreu Blaya AU - Juan Bory Reyes TI - Clifford analysis approach to a self-conjugate Cauchy type integral on Ahlfors regular surfaces JO - Annales Polonici Mathematici PY - 2014 SP - 101 EP - 108 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap110-2-1/ DO - 10.4064/ap110-2-1 LA - en ID - 10_4064_ap110_2_1 ER -
%0 Journal Article %A Ricardo Abreu Blaya %A Juan Bory Reyes %T Clifford analysis approach to a self-conjugate Cauchy type integral on Ahlfors regular surfaces %J Annales Polonici Mathematici %D 2014 %P 101-108 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap110-2-1/ %R 10.4064/ap110-2-1 %G en %F 10_4064_ap110_2_1
Ricardo Abreu Blaya; Juan Bory Reyes. Clifford analysis approach to a self-conjugate Cauchy type integral on Ahlfors regular surfaces. Annales Polonici Mathematici, Tome 110 (2014) no. 2, pp. 101-108. doi: 10.4064/ap110-2-1
Cité par Sources :