Differential inclusions in the Almgren sense on unbounded domains
Annales Polonici Mathematici, Tome 110 (2014) no. 1, pp. 91-99.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of solutions of differential inclusions on a half-line. Our results are based on an approximation method combined with a diagonalization method.
DOI : 10.4064/ap110-1-8
Keywords: prove existence solutions differential inclusions half line results based approximation method combined diagonalization method

Johnny Henderson 1 ; Abdelghani Ouahab 2

1 Department of Mathematics Baylor University Waco, TX 76798-7328, U.S.A.
2 Laboratory of Mathematics Sidi-Bel-Abbès University P.O. Box 89 22000 Sidi-Bel-Abbès, Algeria
@article{10_4064_ap110_1_8,
     author = {Johnny Henderson and Abdelghani Ouahab},
     title = {Differential inclusions in the {Almgren} sense
 on unbounded domains},
     journal = {Annales Polonici Mathematici},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2014},
     doi = {10.4064/ap110-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-8/}
}
TY  - JOUR
AU  - Johnny Henderson
AU  - Abdelghani Ouahab
TI  - Differential inclusions in the Almgren sense
 on unbounded domains
JO  - Annales Polonici Mathematici
PY  - 2014
SP  - 91
EP  - 99
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-8/
DO  - 10.4064/ap110-1-8
LA  - en
ID  - 10_4064_ap110_1_8
ER  - 
%0 Journal Article
%A Johnny Henderson
%A Abdelghani Ouahab
%T Differential inclusions in the Almgren sense
 on unbounded domains
%J Annales Polonici Mathematici
%D 2014
%P 91-99
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-8/
%R 10.4064/ap110-1-8
%G en
%F 10_4064_ap110_1_8
Johnny Henderson; Abdelghani Ouahab. Differential inclusions in the Almgren sense
 on unbounded domains. Annales Polonici Mathematici, Tome 110 (2014) no. 1, pp. 91-99. doi : 10.4064/ap110-1-8. http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-8/

Cité par Sources :