On existence of a unique generalized solution to systems of elliptic PDEs at resonance
Annales Polonici Mathematici, Tome 110 (2014) no. 1, pp. 25-31
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.
Keywords:
dirichlet boundary value problem systems elliptic partial differential equations resonance studied existence unique generalized solution proved using min max principle global inversion theorem
Affiliations des auteurs :
Tiantian Qiao 1 ; Weiguo Li 2 ; Kai Liu 3 ; Boying Wu 4
@article{10_4064_ap110_1_3,
author = {Tiantian Qiao and Weiguo Li and Kai Liu and Boying Wu},
title = {On existence of a unique generalized solution to systems of elliptic {PDEs} at resonance},
journal = {Annales Polonici Mathematici},
pages = {25--31},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {2014},
doi = {10.4064/ap110-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-3/}
}
TY - JOUR AU - Tiantian Qiao AU - Weiguo Li AU - Kai Liu AU - Boying Wu TI - On existence of a unique generalized solution to systems of elliptic PDEs at resonance JO - Annales Polonici Mathematici PY - 2014 SP - 25 EP - 31 VL - 110 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-3/ DO - 10.4064/ap110-1-3 LA - en ID - 10_4064_ap110_1_3 ER -
%0 Journal Article %A Tiantian Qiao %A Weiguo Li %A Kai Liu %A Boying Wu %T On existence of a unique generalized solution to systems of elliptic PDEs at resonance %J Annales Polonici Mathematici %D 2014 %P 25-31 %V 110 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap110-1-3/ %R 10.4064/ap110-1-3 %G en %F 10_4064_ap110_1_3
Tiantian Qiao; Weiguo Li; Kai Liu; Boying Wu. On existence of a unique generalized solution to systems of elliptic PDEs at resonance. Annales Polonici Mathematici, Tome 110 (2014) no. 1, pp. 25-31. doi: 10.4064/ap110-1-3
Cité par Sources :