Piecewise-deterministic Markov processes
Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 279-296
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Poisson driven stochastic differential equations on a separable Banach space are examined. Some sufficient conditions are given for the asymptotic stability of a Markov operator $P$ corresponding to the change of distribution from jump to jump. We also give criteria for the continuous dependence of the invariant measure for $P$ on the intensity of the Poisson process.
Keywords:
poisson driven stochastic differential equations separable banach space examined sufficient conditions given asymptotic stability markov operator corresponding change distribution jump jump criteria continuous dependence invariant measure intensity poisson process
Affiliations des auteurs :
Jolanta Kazak 1
@article{10_4064_ap109_3_4,
author = {Jolanta Kazak},
title = {Piecewise-deterministic {Markov} processes},
journal = {Annales Polonici Mathematici},
pages = {279--296},
publisher = {mathdoc},
volume = {109},
number = {3},
year = {2013},
doi = {10.4064/ap109-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-4/}
}
Jolanta Kazak. Piecewise-deterministic Markov processes. Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 279-296. doi: 10.4064/ap109-3-4
Cité par Sources :