Invariant scrambled sets and
maximal distributional chaos
Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 271-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For the full shift $(\varSigma _{2}, \sigma )$ on two symbols, we construct an invariant distributionally $\epsilon $-scrambled set for all $0\epsilon \operatorname{diam} \varSigma _{2}$ in which each point is transitive, but not weakly almost periodic.
Keywords:
full shift varsigma sigma symbols construct invariant distributionally epsilon scrambled set epsilon operatorname diam varsigma which each point transitive weakly almost periodic
Affiliations des auteurs :
Xinxing Wu 1 ; Peiyong Zhu 2
@article{10_4064_ap109_3_3,
author = {Xinxing Wu and Peiyong Zhu},
title = {Invariant scrambled sets and
maximal distributional chaos},
journal = {Annales Polonici Mathematici},
pages = {271--278},
publisher = {mathdoc},
volume = {109},
number = {3},
year = {2013},
doi = {10.4064/ap109-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-3/}
}
TY - JOUR AU - Xinxing Wu AU - Peiyong Zhu TI - Invariant scrambled sets and maximal distributional chaos JO - Annales Polonici Mathematici PY - 2013 SP - 271 EP - 278 VL - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap109-3-3/ DO - 10.4064/ap109-3-3 LA - en ID - 10_4064_ap109_3_3 ER -
Xinxing Wu; Peiyong Zhu. Invariant scrambled sets and maximal distributional chaos. Annales Polonici Mathematici, Tome 109 (2013) no. 3, pp. 271-278. doi: 10.4064/ap109-3-3
Cité par Sources :