Fixed points of meromorphic functions
and of their differences and shifts
Annales Polonici Mathematici, Tome 109 (2013) no. 2, pp. 153-163
Let $f(z)$ be a finite order transcendental meromorphic function such that $\lambda (1/f(z))\sigma (f(z))$, and let $c\in \mathbb {C}\setminus \{0\}$ be a constant such that $f(z+c)\not \equiv f(z)+c$. We mainly prove that
$$\eqalign {\max\{\tau (f(z)), \tau (\Delta _c f(z))\}=\max\{\tau (f(z)), \tau (f(z+c))\}
\cr
=\max\{\tau (\Delta _c f(z)), \tau (f(z+c))\}=\sigma (f(z)),
}$$where $\tau (g(z))$ denotes the exponent of convergence of fixed points of the meromorphic function $g(z)$, and $\sigma (g(z))$ denotes the order of growth of $g(z).$
Keywords:
finite order transcendental meromorphic function lambda sigma mathbb setminus constant equiv mainly prove eqalign max tau tau delta max tau tau max tau delta tau sigma where tau denotes exponent convergence fixed points meromorphic function sigma denotes order growth
Affiliations des auteurs :
Zong-Xuan Chen  1
@article{10_4064_ap109_2_4,
author = {Zong-Xuan Chen},
title = {Fixed points of meromorphic functions
and of their differences and shifts},
journal = {Annales Polonici Mathematici},
pages = {153--163},
year = {2013},
volume = {109},
number = {2},
doi = {10.4064/ap109-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-2-4/}
}
TY - JOUR AU - Zong-Xuan Chen TI - Fixed points of meromorphic functions and of their differences and shifts JO - Annales Polonici Mathematici PY - 2013 SP - 153 EP - 163 VL - 109 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap109-2-4/ DO - 10.4064/ap109-2-4 LA - en ID - 10_4064_ap109_2_4 ER -
Zong-Xuan Chen. Fixed points of meromorphic functions and of their differences and shifts. Annales Polonici Mathematici, Tome 109 (2013) no. 2, pp. 153-163. doi: 10.4064/ap109-2-4
Cité par Sources :