Asymptotics of solutions to the Dirichlet–Cauchy problem for parabolic equations in domains with edges
Annales Polonici Mathematici, Tome 109 (2013) no. 2, pp. 121-135
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper is concerned with the Dirichlet–Cauchy problem for second order parabolic equations in domains with edges. The asymptotic behaviour of the solution near the edge is studied.
Keywords:
paper concerned dirichlet cauchy problem second order parabolic equations domains edges asymptotic behaviour solution near edge studied
Affiliations des auteurs :
Vu Trong Luong 1 ; Nguyen Manh Hung 2 ; Do Van Loi 3
@article{10_4064_ap109_2_2,
author = {Vu Trong Luong and Nguyen Manh Hung and Do Van Loi},
title = {Asymptotics of solutions to the {Dirichlet{\textendash}Cauchy} problem for parabolic equations in domains with edges},
journal = {Annales Polonici Mathematici},
pages = {121--135},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {2013},
doi = {10.4064/ap109-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-2-2/}
}
TY - JOUR AU - Vu Trong Luong AU - Nguyen Manh Hung AU - Do Van Loi TI - Asymptotics of solutions to the Dirichlet–Cauchy problem for parabolic equations in domains with edges JO - Annales Polonici Mathematici PY - 2013 SP - 121 EP - 135 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap109-2-2/ DO - 10.4064/ap109-2-2 LA - en ID - 10_4064_ap109_2_2 ER -
%0 Journal Article %A Vu Trong Luong %A Nguyen Manh Hung %A Do Van Loi %T Asymptotics of solutions to the Dirichlet–Cauchy problem for parabolic equations in domains with edges %J Annales Polonici Mathematici %D 2013 %P 121-135 %V 109 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap109-2-2/ %R 10.4064/ap109-2-2 %G en %F 10_4064_ap109_2_2
Vu Trong Luong; Nguyen Manh Hung; Do Van Loi. Asymptotics of solutions to the Dirichlet–Cauchy problem for parabolic equations in domains with edges. Annales Polonici Mathematici, Tome 109 (2013) no. 2, pp. 121-135. doi: 10.4064/ap109-2-2
Cité par Sources :