1College of Science Hohai University Nanjing 210098, P.R. China and Science and Information College Qingdao Agricultural University Qingdao 266109, P.R. China 2College of Science Hohai University Nanjing 210098, P.R. China
Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 93-107
We consider the existence and nonexistence of solutions
for the following singular quasi-linear elliptic problem with concave and convex nonlinearities:
$$
\left\{
\begin{array}{@{}l}
-\,\mathrm{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla
u)+h(x)|u|^{p-2}u=g(x)|u|^{r-2}u,\quad x\in\varOmega,\\
|x|^{-ap}|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=\lambda
f(x)|u|^{q-2}u, \quad x \in \partial\varOmega,
\end{array}
\right.
$$
where $\varOmega$ is an exterior domain in $\mathbb{R}^N$, that is,
$\varOmega={\mathbb {R}^N} \setminus D $, where $D$ is a bounded domain
in $ \mathbb {R}^N $ with smooth boundary $\partial
D$$(=\partial\varOmega)$, and $0\in \varOmega.$ Here $\lambda>0$, $0\le a (N-p)/p$, $1 p N $,
${\partial}/{\partial\nu}$ is the outward normal derivative on
$\partial\varOmega$. By the variational method, we prove the
existence of multiple solutions. By the test function method, we give
a sufficient condition under which the problem has no nontrivial
nonnegative solutions.
Keywords:
consider existence nonexistence solutions following singular quasi linear elliptic problem concave convex nonlinearities begin array mathrm div ap nabla p nabla p r quad varomega ap nabla p frac partial partial lambda q quad partial varomega end array right where varomega exterior domain mathbb varomega mathbb setminus where bounded domain mathbb smooth boundary partial partial varomega varomega here lambda n p partial partial outward normal derivative partial varomega variational method prove existence multiple solutions test function method sufficient condition under which problem has nontrivial nonnegative solutions
Affiliations des auteurs :
Zonghu Xiu 
1
;
Caisheng Chen 
2
1
College of Science Hohai University Nanjing 210098, P.R. China and Science and Information College Qingdao Agricultural University Qingdao 266109, P.R. China
2
College of Science Hohai University Nanjing 210098, P.R. China
@article{10_4064_ap109_1_7,
author = {Zonghu Xiu and Caisheng Chen},
title = {Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition},
journal = {Annales Polonici Mathematici},
pages = {93--107},
year = {2013},
volume = {109},
number = {1},
doi = {10.4064/ap109-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/}
}
TY - JOUR
AU - Zonghu Xiu
AU - Caisheng Chen
TI - Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition
JO - Annales Polonici Mathematici
PY - 2013
SP - 93
EP - 107
VL - 109
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/
DO - 10.4064/ap109-1-7
LA - en
ID - 10_4064_ap109_1_7
ER -
%0 Journal Article
%A Zonghu Xiu
%A Caisheng Chen
%T Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition
%J Annales Polonici Mathematici
%D 2013
%P 93-107
%V 109
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/
%R 10.4064/ap109-1-7
%G en
%F 10_4064_ap109_1_7
Zonghu Xiu; Caisheng Chen. Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition. Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 93-107. doi: 10.4064/ap109-1-7