Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition
Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 93-107.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the existence and nonexistence of solutions for the following singular quasi-linear elliptic problem with concave and convex nonlinearities: $$ \left\{ \begin{array}{@{}l} -\,\mathrm{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)+h(x)|u|^{p-2}u=g(x)|u|^{r-2}u,\quad x\in\varOmega,\\ |x|^{-ap}|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=\lambda f(x)|u|^{q-2}u, \quad x \in \partial\varOmega, \end{array} \right. $$ where $\varOmega$ is an exterior domain in $\mathbb{R}^N$, that is, $\varOmega={\mathbb {R}^N} \setminus D $, where $D$ is a bounded domain in $ \mathbb {R}^N $ with smooth boundary $\partial D$ $(=\partial\varOmega)$, and $0\in \varOmega.$ Here $\lambda>0$, $0\le a (N-p)/p$, $1 p N $, ${\partial}/{\partial\nu}$ is the outward normal derivative on $\partial\varOmega$. By the variational method, we prove the existence of multiple solutions. By the test function method, we give a sufficient condition under which the problem has no nontrivial nonnegative solutions.
DOI : 10.4064/ap109-1-7
Keywords: consider existence nonexistence solutions following singular quasi linear elliptic problem concave convex nonlinearities begin array mathrm div ap nabla p nabla p r quad varomega ap nabla p frac partial partial lambda q quad partial varomega end array right where varomega exterior domain mathbb varomega mathbb setminus where bounded domain mathbb smooth boundary partial partial varomega varomega here lambda n p partial partial outward normal derivative partial varomega variational method prove existence multiple solutions test function method sufficient condition under which problem has nontrivial nonnegative solutions

Zonghu Xiu 1 ; Caisheng Chen 2

1 College of Science Hohai University Nanjing 210098, P.R. China and Science and Information College Qingdao Agricultural University Qingdao 266109, P.R. China
2 College of Science Hohai University Nanjing 210098, P.R. China
@article{10_4064_ap109_1_7,
     author = {Zonghu Xiu and Caisheng Chen},
     title = {Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition},
     journal = {Annales Polonici Mathematici},
     pages = {93--107},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2013},
     doi = {10.4064/ap109-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/}
}
TY  - JOUR
AU  - Zonghu Xiu
AU  - Caisheng Chen
TI  - Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 93
EP  - 107
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/
DO  - 10.4064/ap109-1-7
LA  - en
ID  - 10_4064_ap109_1_7
ER  - 
%0 Journal Article
%A Zonghu Xiu
%A Caisheng Chen
%T Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition
%J Annales Polonici Mathematici
%D 2013
%P 93-107
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/
%R 10.4064/ap109-1-7
%G en
%F 10_4064_ap109_1_7
Zonghu Xiu; Caisheng Chen. Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition. Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 93-107. doi : 10.4064/ap109-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/

Cité par Sources :