Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition
Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 93-107
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the existence and nonexistence of solutions
for the following singular quasi-linear elliptic problem with concave and convex nonlinearities:
$$
\left\{
\begin{array}{@{}l}
-\,\mathrm{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla
u)+h(x)|u|^{p-2}u=g(x)|u|^{r-2}u,\quad x\in\varOmega,\\
|x|^{-ap}|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=\lambda
f(x)|u|^{q-2}u, \quad x \in \partial\varOmega,
\end{array}
\right.
$$
where $\varOmega$ is an exterior domain in $\mathbb{R}^N$, that is,
$\varOmega={\mathbb {R}^N} \setminus D $, where $D$ is a bounded domain
in $ \mathbb {R}^N $ with smooth boundary $\partial
D$ $(=\partial\varOmega)$, and $0\in \varOmega.$ Here $\lambda>0$, $0\le a (N-p)/p$, $1 p N $,
${\partial}/{\partial\nu}$ is the outward normal derivative on
$\partial\varOmega$. By the variational method, we prove the
existence of multiple solutions. By the test function method, we give
a sufficient condition under which the problem has no nontrivial
nonnegative solutions.
Keywords:
consider existence nonexistence solutions following singular quasi linear elliptic problem concave convex nonlinearities begin array mathrm div ap nabla p nabla p r quad varomega ap nabla p frac partial partial lambda q quad partial varomega end array right where varomega exterior domain mathbb varomega mathbb setminus where bounded domain mathbb smooth boundary partial partial varomega varomega here lambda n p partial partial outward normal derivative partial varomega variational method prove existence multiple solutions test function method sufficient condition under which problem has nontrivial nonnegative solutions
Affiliations des auteurs :
Zonghu Xiu 1 ; Caisheng Chen 2
@article{10_4064_ap109_1_7,
author = {Zonghu Xiu and Caisheng Chen},
title = {Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition},
journal = {Annales Polonici Mathematici},
pages = {93--107},
publisher = {mathdoc},
volume = {109},
number = {1},
year = {2013},
doi = {10.4064/ap109-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/}
}
TY - JOUR AU - Zonghu Xiu AU - Caisheng Chen TI - Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition JO - Annales Polonici Mathematici PY - 2013 SP - 93 EP - 107 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/ DO - 10.4064/ap109-1-7 LA - en ID - 10_4064_ap109_1_7 ER -
%0 Journal Article %A Zonghu Xiu %A Caisheng Chen %T Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition %J Annales Polonici Mathematici %D 2013 %P 93-107 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-7/ %R 10.4064/ap109-1-7 %G en %F 10_4064_ap109_1_7
Zonghu Xiu; Caisheng Chen. Existence and nonexistence of solutions for a singular elliptic problem with a nonlinear boundary condition. Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 93-107. doi: 10.4064/ap109-1-7
Cité par Sources :