On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces
Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 29-38
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give necessary and sufficient conditions for topological hyperbolicity of a homeomorphism of a metric space, restricted to a given compact invariant set. These conditions are related to the existence of an appropriate finite covering of this set and a corresponding cone-hyperbolic graph-directed iterated function system.
Keywords:
necessary sufficient conditions topological hyperbolicity homeomorphism metric space restricted given compact invariant set these conditions related existence appropriate finite covering set corresponding cone hyperbolic graph directed iterated function system
Affiliations des auteurs :
Marcin Mazur 1
@article{10_4064_ap109_1_2,
author = {Marcin Mazur},
title = {On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces},
journal = {Annales Polonici Mathematici},
pages = {29--38},
publisher = {mathdoc},
volume = {109},
number = {1},
year = {2013},
doi = {10.4064/ap109-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-2/}
}
TY - JOUR AU - Marcin Mazur TI - On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces JO - Annales Polonici Mathematici PY - 2013 SP - 29 EP - 38 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-2/ DO - 10.4064/ap109-1-2 LA - en ID - 10_4064_ap109_1_2 ER -
%0 Journal Article %A Marcin Mazur %T On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces %J Annales Polonici Mathematici %D 2013 %P 29-38 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap109-1-2/ %R 10.4064/ap109-1-2 %G en %F 10_4064_ap109_1_2
Marcin Mazur. On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces. Annales Polonici Mathematici, Tome 109 (2013) no. 1, pp. 29-38. doi: 10.4064/ap109-1-2
Cité par Sources :