Unique decomposition for a polynomial of low rank
Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 219-224.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $F$ be a homogeneous polynomial of degree $d$ in $m+1$ variables defined over an algebraically closed field of characteristic 0 and suppose that $F$ belongs to the $s$th secant variety of the $d$-uple Veronese embedding of $\mathbb {P}^m$ into $ \mathbb {P}^{{m+d\atopwithdelims ()d}-1}$ but that its minimal decomposition as a sum of $d$th powers of linear forms requires more than $s$ summands. We show that if $s\leq d$ then $F$ can be uniquely written as $F=M_1^d+\cdots + M_t^d+Q$, where $M_1, \ldots , M_t$ are linear forms with $t\leq (d-1)/2$, and $Q$ is a binary form such that $Q=\sum _{i=1}^q l_i^{d-d_i}m_i$ with $l_i$'s linear forms and $m_i$'s forms of degree $d_i$ such that $\sum (d_i+1)=s-t$.
DOI : 10.4064/ap108-3-2
Keywords: homogeneous polynomial degree variables defined algebraically closed field characteristic suppose belongs sth secant variety d uple veronese embedding mathbb mathbb atopwithdelims its minimal decomposition sum dth powers linear forms requires summands leq uniquely written cdots q where ldots linear forms leq d binary form sum d d linear forms forms degree sum s t

Edoardo Ballico 1 ; Alessandra Bernardi 2

1 Department of Mathematics University of Trento 38123 Povo (TN), Italy
2 Dipartimento di Matematica “Giuseppe Peano” Università degli Studi di Torino Via Carlo Alberto 10 I-10123 Torino, Italy
@article{10_4064_ap108_3_2,
     author = {Edoardo Ballico and Alessandra Bernardi},
     title = {Unique decomposition for a polynomial of low rank},
     journal = {Annales Polonici Mathematici},
     pages = {219--224},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2013},
     doi = {10.4064/ap108-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-2/}
}
TY  - JOUR
AU  - Edoardo Ballico
AU  - Alessandra Bernardi
TI  - Unique decomposition for a polynomial of low rank
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 219
EP  - 224
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-2/
DO  - 10.4064/ap108-3-2
LA  - en
ID  - 10_4064_ap108_3_2
ER  - 
%0 Journal Article
%A Edoardo Ballico
%A Alessandra Bernardi
%T Unique decomposition for a polynomial of low rank
%J Annales Polonici Mathematici
%D 2013
%P 219-224
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-2/
%R 10.4064/ap108-3-2
%G en
%F 10_4064_ap108_3_2
Edoardo Ballico; Alessandra Bernardi. Unique decomposition for a polynomial of low rank. Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 219-224. doi : 10.4064/ap108-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-2/

Cité par Sources :