Unique decomposition for a polynomial of low rank
Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 219-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $F$ be a homogeneous polynomial of degree $d$ in $m+1$ variables defined over an algebraically closed field of characteristic 0 and suppose that $F$ belongs to the $s$th secant variety of the $d$-uple Veronese embedding of $\mathbb {P}^m$ into $ \mathbb {P}^{{m+d\atopwithdelims ()d}-1}$ but that its minimal decomposition as a sum of $d$th powers of linear forms requires more than $s$ summands. We show that if $s\leq d$ then $F$ can be uniquely written as $F=M_1^d+\cdots + M_t^d+Q$, where $M_1, \ldots , M_t$ are linear forms with $t\leq (d-1)/2$, and $Q$ is a binary form such that $Q=\sum _{i=1}^q l_i^{d-d_i}m_i$ with $l_i$'s linear forms and $m_i$'s forms of degree $d_i$ such that $\sum (d_i+1)=s-t$.
Keywords:
homogeneous polynomial degree variables defined algebraically closed field characteristic suppose belongs sth secant variety d uple veronese embedding mathbb mathbb atopwithdelims its minimal decomposition sum dth powers linear forms requires summands leq uniquely written cdots q where ldots linear forms leq d binary form sum d d linear forms forms degree sum s t
Affiliations des auteurs :
Edoardo Ballico 1 ; Alessandra Bernardi 2
@article{10_4064_ap108_3_2,
author = {Edoardo Ballico and Alessandra Bernardi},
title = {Unique decomposition for a polynomial of low rank},
journal = {Annales Polonici Mathematici},
pages = {219--224},
publisher = {mathdoc},
volume = {108},
number = {3},
year = {2013},
doi = {10.4064/ap108-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-2/}
}
TY - JOUR AU - Edoardo Ballico AU - Alessandra Bernardi TI - Unique decomposition for a polynomial of low rank JO - Annales Polonici Mathematici PY - 2013 SP - 219 EP - 224 VL - 108 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap108-3-2/ DO - 10.4064/ap108-3-2 LA - en ID - 10_4064_ap108_3_2 ER -
Edoardo Ballico; Alessandra Bernardi. Unique decomposition for a polynomial of low rank. Annales Polonici Mathematici, Tome 108 (2013) no. 3, pp. 219-224. doi: 10.4064/ap108-3-2
Cité par Sources :