On generalized topological spaces II
Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 185-214
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This is the second part of A. Piękosz [Ann. Polon. Math. 107 (2013), 217–241].
The categories ${\bf GTS}(M)$, with $M$ a non-empty set, are shown to be topological. Several related categories are proved to be finitely complete. Locally small and nice weakly small spaces can be described using certain sublattices of power sets. Some important elements of the theory of locally definable and weakly definable spaces are reconstructed in a wide context of structures with topologies.
Keywords:
second part kosz ann polon math categories gts non empty set shown topological several related categories proved finitely complete locally small nice weakly small spaces described using certain sublattices power sets important elements theory locally definable weakly definable spaces reconstructed wide context structures topologies
Affiliations des auteurs :
Artur Piękosz 1
@article{10_4064_ap108_2_4,
author = {Artur Pi\k{e}kosz},
title = {On generalized topological spaces {II}},
journal = {Annales Polonici Mathematici},
pages = {185--214},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2013},
doi = {10.4064/ap108-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-4/}
}
Artur Piękosz. On generalized topological spaces II. Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 185-214. doi: 10.4064/ap108-2-4
Cité par Sources :