On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals
Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 133-153
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $1\leq q\leq \alpha \leq p\leq \infty$, $(L^q,l^p)^{\alpha}$ is a complex Banach space which is
continuously included in the Wiener amalgam space $(L^q,l^p)$ and contains
the Lebesgue space $L^{\alpha}$.
We study the closure $(L^q,l^p)^{\alpha}_{c,0}$ in $(L^q,l^p)^{\alpha}$
of the space $\mathcal{D}$ of test functions (infinitely differentiable and with
compact support in $\mathbb R^d$) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces.
We also introduce the Sobolev type space $W^1((L^q,l^p)^{\alpha})$ (a subspace of a Morrey–Sobolev space, but a superspace of the classical Sobolev space $W^{1,\alpha}$) and obtain in it Sobolev inequalities and a Kondrashov–Rellich
compactness theorem.
Keywords:
leq leq alpha leq leq infty p alpha complex banach space which continuously included wiener amalgam space p contains lebesgue space alpha study closure p alpha p alpha space mathcal test functions infinitely differentiable compact support mathbb obtain norm inequalities riesz potential operators riesz transforms these spaces introduce sobolev type space p alpha subspace morrey sobolev space superspace classical sobolev space alpha obtain sobolev inequalities kondrashov rellich compactness theorem
Affiliations des auteurs :
Mouhamadou Dosso 1 ; Ibrahim Fofana 1 ; Moumine Sanogo 2
@article{10_4064_ap108_2_2,
author = {Mouhamadou Dosso and Ibrahim Fofana and Moumine Sanogo},
title = {On some subspaces of {Morrey{\textendash}Sobolev} spaces and boundedness of {Riesz} integrals},
journal = {Annales Polonici Mathematici},
pages = {133--153},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2013},
doi = {10.4064/ap108-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/}
}
TY - JOUR AU - Mouhamadou Dosso AU - Ibrahim Fofana AU - Moumine Sanogo TI - On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals JO - Annales Polonici Mathematici PY - 2013 SP - 133 EP - 153 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/ DO - 10.4064/ap108-2-2 LA - en ID - 10_4064_ap108_2_2 ER -
%0 Journal Article %A Mouhamadou Dosso %A Ibrahim Fofana %A Moumine Sanogo %T On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals %J Annales Polonici Mathematici %D 2013 %P 133-153 %V 108 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/ %R 10.4064/ap108-2-2 %G en %F 10_4064_ap108_2_2
Mouhamadou Dosso; Ibrahim Fofana; Moumine Sanogo. On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals. Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 133-153. doi: 10.4064/ap108-2-2
Cité par Sources :