On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals
Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 133-153.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $1\leq q\leq \alpha \leq p\leq \infty$, $(L^q,l^p)^{\alpha}$ is a complex Banach space which is continuously included in the Wiener amalgam space $(L^q,l^p)$ and contains the Lebesgue space $L^{\alpha}$. We study the closure $(L^q,l^p)^{\alpha}_{c,0}$ in $(L^q,l^p)^{\alpha}$ of the space $\mathcal{D}$ of test functions (infinitely differentiable and with compact support in $\mathbb R^d$) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space $W^1((L^q,l^p)^{\alpha})$ (a subspace of a Morrey–Sobolev space, but a superspace of the classical Sobolev space $W^{1,\alpha}$) and obtain in it Sobolev inequalities and a Kondrashov–Rellich compactness theorem.
DOI : 10.4064/ap108-2-2
Keywords: leq leq alpha leq leq infty p alpha complex banach space which continuously included wiener amalgam space p contains lebesgue space alpha study closure p alpha p alpha space mathcal test functions infinitely differentiable compact support mathbb obtain norm inequalities riesz potential operators riesz transforms these spaces introduce sobolev type space p alpha subspace morrey sobolev space superspace classical sobolev space alpha obtain sobolev inequalities kondrashov rellich compactness theorem

Mouhamadou Dosso 1 ; Ibrahim Fofana 1 ; Moumine Sanogo 2

1 UFR de Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan, Côte d'Ivoire
2 D.E.R. de Mathématiques et Informatique Université de Bamako Bamako, Mali
@article{10_4064_ap108_2_2,
     author = {Mouhamadou Dosso and Ibrahim Fofana and Moumine Sanogo},
     title = {On some  subspaces   of  {Morrey{\textendash}Sobolev} spaces and  boundedness  of  {Riesz} integrals},
     journal = {Annales Polonici Mathematici},
     pages = {133--153},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2013},
     doi = {10.4064/ap108-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/}
}
TY  - JOUR
AU  - Mouhamadou Dosso
AU  - Ibrahim Fofana
AU  - Moumine Sanogo
TI  - On some  subspaces   of  Morrey–Sobolev spaces and  boundedness  of  Riesz integrals
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 133
EP  - 153
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/
DO  - 10.4064/ap108-2-2
LA  - en
ID  - 10_4064_ap108_2_2
ER  - 
%0 Journal Article
%A Mouhamadou Dosso
%A Ibrahim Fofana
%A Moumine Sanogo
%T On some  subspaces   of  Morrey–Sobolev spaces and  boundedness  of  Riesz integrals
%J Annales Polonici Mathematici
%D 2013
%P 133-153
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/
%R 10.4064/ap108-2-2
%G en
%F 10_4064_ap108_2_2
Mouhamadou Dosso; Ibrahim Fofana; Moumine Sanogo. On some  subspaces   of  Morrey–Sobolev spaces and  boundedness  of  Riesz integrals. Annales Polonici Mathematici, Tome 108 (2013) no. 2, pp. 133-153. doi : 10.4064/ap108-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap108-2-2/

Cité par Sources :