Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems
Annales Polonici Mathematici, Tome 107 (2013) no. 2, pp. 133-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using Ricceri's variational principle, we establish the existence of infinitely many solutions for a class of two-point boundary value Kirchhoff-type systems.
DOI : 10.4064/ap107-2-3
Keywords: using ricceris variational principle establish existence infinitely many solutions class two point boundary value kirchhoff type systems

Shapour Heidarkhani 1

1 Department of Mathematics Faculty of Sciences Razi University 67149 Kermanshah, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran
@article{10_4064_ap107_2_3,
     author = {Shapour Heidarkhani},
     title = {Infinitely many solutions for systems of $n$ two-point {Kirchhoff-type} boundary value problems},
     journal = {Annales Polonici Mathematici},
     pages = {133--152},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2013},
     doi = {10.4064/ap107-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/}
}
TY  - JOUR
AU  - Shapour Heidarkhani
TI  - Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 133
EP  - 152
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/
DO  - 10.4064/ap107-2-3
LA  - en
ID  - 10_4064_ap107_2_3
ER  - 
%0 Journal Article
%A Shapour Heidarkhani
%T Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems
%J Annales Polonici Mathematici
%D 2013
%P 133-152
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/
%R 10.4064/ap107-2-3
%G en
%F 10_4064_ap107_2_3
Shapour Heidarkhani. Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems. Annales Polonici Mathematici, Tome 107 (2013) no. 2, pp. 133-152. doi : 10.4064/ap107-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/

Cité par Sources :