Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems
Annales Polonici Mathematici, Tome 107 (2013) no. 2, pp. 133-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using Ricceri's variational principle, we establish the existence of infinitely many solutions for a class of two-point boundary value Kirchhoff-type systems.
Keywords:
using ricceris variational principle establish existence infinitely many solutions class two point boundary value kirchhoff type systems
Affiliations des auteurs :
Shapour Heidarkhani 1
@article{10_4064_ap107_2_3,
author = {Shapour Heidarkhani},
title = {Infinitely many solutions for systems of $n$ two-point {Kirchhoff-type} boundary value problems},
journal = {Annales Polonici Mathematici},
pages = {133--152},
publisher = {mathdoc},
volume = {107},
number = {2},
year = {2013},
doi = {10.4064/ap107-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/}
}
TY - JOUR AU - Shapour Heidarkhani TI - Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems JO - Annales Polonici Mathematici PY - 2013 SP - 133 EP - 152 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/ DO - 10.4064/ap107-2-3 LA - en ID - 10_4064_ap107_2_3 ER -
%0 Journal Article %A Shapour Heidarkhani %T Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems %J Annales Polonici Mathematici %D 2013 %P 133-152 %V 107 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap107-2-3/ %R 10.4064/ap107-2-3 %G en %F 10_4064_ap107_2_3
Shapour Heidarkhani. Infinitely many solutions for systems of $n$ two-point Kirchhoff-type boundary value problems. Annales Polonici Mathematici, Tome 107 (2013) no. 2, pp. 133-152. doi: 10.4064/ap107-2-3
Cité par Sources :