We present a result on the existence of some kind of peak functions for $\mathbb C$-convex domains
and for the symmetrized polydisc. Then we apply the latter result to show the equivariance of the set of peak points for $A(D)$ under proper holomorphic mappings. Additionally,
we present a description of the set of peak points in the class of bounded pseudoconvex Reinhardt domains.
Keywords:
present result existence kind peak functions mathbb c convex domains symmetrized polydisc apply latter result equivariance set peak points under proper holomorphic mappings additionally present description set peak points class bounded pseudoconvex reinhardt domains
@article{10_4064_ap107_1_7,
author = {{\L}ukasz Kosi\'nski and W{\l}odzimierz Zwonek},
title = {Proper holomorphic mappings vs. peak points and {Shilov} boundary},
journal = {Annales Polonici Mathematici},
pages = {97--108},
year = {2013},
volume = {107},
number = {1},
doi = {10.4064/ap107-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-7/}
}
TY - JOUR
AU - Łukasz Kosiński
AU - Włodzimierz Zwonek
TI - Proper holomorphic mappings vs. peak points and Shilov boundary
JO - Annales Polonici Mathematici
PY - 2013
SP - 97
EP - 108
VL - 107
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-7/
DO - 10.4064/ap107-1-7
LA - en
ID - 10_4064_ap107_1_7
ER -