Flatness testing over singular bases
Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 87-96
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that non-flatness of a morphism $\varphi:X\to Y$ of complex-analytic spaces with a locally irreducible target of dimension $n$ manifests in the existence of vertical components in the $n$-fold fibred power of the pull-back of $\varphi$ to the desingularization of $Y$.
An algebraic analogue follows: Let $R$ be a locally (analytically) irreducible finite type $\mathbb C$-algebra and an integral domain of Krull dimension $n$, and let $S$ be a regular $n$-dimensional algebra of finite type over $R$ (but not necessarily a finite $R$-module), such that
$\mathop{\rm Spec} S\to\mathop{\rm Spec} R$ is dominant. Then a finite type $R$-algebra $A$ is $R$-flat if and only if $(A^{\otimes^n_R})\otimes_RS$ is a torsion-free $R$-module.
Keywords:
non flatness morphism varphi complex analytic spaces locally irreducible target dimension manifests existence vertical components n fold fibred power pull back varphi desingularization algebraic analogue follows locally analytically irreducible finite type mathbb c algebra integral domain krull dimension regular n dimensional algebra finite type necessarily finite r module mathop spec mathop spec dominant finite type r algebra r flat only otimes otimes torsion free r module
Affiliations des auteurs :
Janusz Adamus 1 ; Hadi Seyedinejad 2
@article{10_4064_ap107_1_6,
author = {Janusz Adamus and Hadi Seyedinejad},
title = {Flatness testing over singular bases},
journal = {Annales Polonici Mathematici},
pages = {87--96},
year = {2013},
volume = {107},
number = {1},
doi = {10.4064/ap107-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-6/}
}
Janusz Adamus; Hadi Seyedinejad. Flatness testing over singular bases. Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 87-96. doi: 10.4064/ap107-1-6
Cité par Sources :