1Department of Mathematics Education and RINS Gyeongsang National University Jinju 660-701, South Korea 2Department of Mathematics Faculty of Sciences and Arts Usak University 1 Eylul Campus 64200, Usak, Turkey
Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 59-69
We study quadric surfaces in Euclidean 3-space with non-degenerate second fundamental form, and classify them in terms of the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature.
Keywords:
study quadric surfaces euclidean space non degenerate second fundamental form classify terms gaussian curvature mean curvature second gaussian curvature second mean curvature
Affiliations des auteurs :
Dae Won Yoon 
1
;
Yılmaz Tunçer 
2
;
Murat Kemal Karacan 
2
1
Department of Mathematics Education and RINS Gyeongsang National University Jinju 660-701, South Korea
2
Department of Mathematics Faculty of Sciences and Arts Usak University 1 Eylul Campus 64200, Usak, Turkey
@article{10_4064_ap107_1_4,
author = {Dae Won Yoon and Y{\i}lmaz Tun\c{c}er and Murat Kemal Karacan},
title = {Non-degenerate quadric surfaces of {Weingarten} type},
journal = {Annales Polonici Mathematici},
pages = {59--69},
year = {2013},
volume = {107},
number = {1},
doi = {10.4064/ap107-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-4/}
}
TY - JOUR
AU - Dae Won Yoon
AU - Yılmaz Tunçer
AU - Murat Kemal Karacan
TI - Non-degenerate quadric surfaces of Weingarten type
JO - Annales Polonici Mathematici
PY - 2013
SP - 59
EP - 69
VL - 107
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-4/
DO - 10.4064/ap107-1-4
LA - en
ID - 10_4064_ap107_1_4
ER -
%0 Journal Article
%A Dae Won Yoon
%A Yılmaz Tunçer
%A Murat Kemal Karacan
%T Non-degenerate quadric surfaces of Weingarten type
%J Annales Polonici Mathematici
%D 2013
%P 59-69
%V 107
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-4/
%R 10.4064/ap107-1-4
%G en
%F 10_4064_ap107_1_4
Dae Won Yoon; Yılmaz Tunçer; Murat Kemal Karacan. Non-degenerate quadric surfaces of Weingarten type. Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 59-69. doi: 10.4064/ap107-1-4