Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 29-48.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be a smooth self-map of an $m$-dimensional ($m\geq 4$) closed connected and simply-connected manifold such that the sequence $\{L(f^n)\}_{n=1}^{\infty}$ of the Lefschetz numbers of its iterations is periodic. For a fixed natural $r$ we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to $r$. The resulting number is given by a topological invariant $J[f]$ which is defined in combinatorial terms and is constant for all sufficiently large $r$. We compute $J[f]$ for self-maps of some manifolds with simple structure of homology groups.
DOI : 10.4064/ap107-1-2
Keywords: smooth self map m dimensional geq closed connected simply connected manifold sequence infty lefschetz numbers its iterations periodic fixed natural wish minimize smooth homotopy class number periodic points periods equal resulting number given topological invariant which defined combinatorial terms constant sufficiently large nbsp compute self maps manifolds simple structure homology groups

Grzegorz Graff 1 ; Agnieszka Kaczkowska 1

1 Faculty of Applied Physics and Mathematics Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk, Poland
@article{10_4064_ap107_1_2,
     author = {Grzegorz Graff and Agnieszka Kaczkowska},
     title = {Reducing the number of periodic points in the smooth homotopy class
of a self-map of a simply-connected manifold with periodic sequence
of {Lefschetz} numbers},
     journal = {Annales Polonici Mathematici},
     pages = {29--48},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2013},
     doi = {10.4064/ap107-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-2/}
}
TY  - JOUR
AU  - Grzegorz Graff
AU  - Agnieszka Kaczkowska
TI  - Reducing the number of periodic points in the smooth homotopy class
of a self-map of a simply-connected manifold with periodic sequence
of Lefschetz numbers
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 29
EP  - 48
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-2/
DO  - 10.4064/ap107-1-2
LA  - en
ID  - 10_4064_ap107_1_2
ER  - 
%0 Journal Article
%A Grzegorz Graff
%A Agnieszka Kaczkowska
%T Reducing the number of periodic points in the smooth homotopy class
of a self-map of a simply-connected manifold with periodic sequence
of Lefschetz numbers
%J Annales Polonici Mathematici
%D 2013
%P 29-48
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-2/
%R 10.4064/ap107-1-2
%G en
%F 10_4064_ap107_1_2
Grzegorz Graff; Agnieszka Kaczkowska. Reducing the number of periodic points in the smooth homotopy class
of a self-map of a simply-connected manifold with periodic sequence
of Lefschetz numbers. Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 29-48. doi : 10.4064/ap107-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-2/

Cité par Sources :