On Noether and strict stability, Hilbert exponent, and relative Nullstellensatz
Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 1-28.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Conditions characterizing the membership of the ideal of a subvariety ${\mathfrak S}$ arising from (effective) divisors in a product complex space $Y \times X$ are given. For the algebra ${\mathcal O}_Y [V]$ of relative regular functions on an algebraic variety $V$, the strict stability is proved, in the case where $Y$ is a normal space, and the Noether stability is established under a weakened condition. As a consequence (for both general and complete intersections) a global Nullstellensatz is derived for divisors in $Y\times {\mathbb C}^N$, respectively, $Y\times {\mathbb P}^N ({\mathbb C})$. Also obtained are a principal ideal theorem for relative divisors, a generalization of the Gauss decomposition rule, and characterizations of solid pseudospherical harmonics on a semi-Riemann domain. A result towards a more general case is as follows: Let ${\mathfrak D}_j$, $1 \le j\le p$, be principal divisors in $X$ associated to the components of a $q$-weakly normal map $g = (g_1,\ldots,g_p) : X \to {\mathbb C}^p$, and $S := \bigcap {\mathfrak S}_{|{\mathfrak D}_j|}$. Then for any proper slicing $(\varphi,g,D)$ of $\{{\mathfrak D}_j\}_{1\le j\le p}$ (where $D\subset X$ is a relatively compact open subset), there exists an explicitly determined Hilbert exponent ${\mathfrak h}_{_{{\mathfrak D}_1 \cdots {\mathfrak D}_p,D}}$ for the ideal of the subvariety ${\mathfrak S} = Y\times (S\cap D)$.
DOI : 10.4064/ap107-1-1
Keywords: conditions characterizing membership ideal subvariety mathfrak arising effective divisors product complex space times given algebra mathcal relative regular functions algebraic variety strict stability proved where normal space noether stability established under weakened condition consequence general complete intersections global nullstellensatz derived divisors times mathbb respectively times mathbb mathbb obtained principal ideal theorem relative divisors generalization gauss decomposition rule characterizations solid pseudospherical harmonics semi riemann domain result towards general follows mathfrak principal divisors associated components q weakly normal map ldots mathbb bigcap mathfrak mathfrak proper slicing varphi mathfrak where subset relatively compact subset there exists explicitly determined hilbert exponent mathfrak mathfrak cdots mathfrak ideal subvariety mathfrak times cap

Chia-chi Tung 1

1 Department of Mathematics and Statistics Minnesota State University, Mankato Mankato, MN 56001, U.S.A.
@article{10_4064_ap107_1_1,
     author = {Chia-chi Tung},
     title = {On {Noether} and strict {stability,
Hilbert
exponent,} and relative {Nullstellensatz}},
     journal = {Annales Polonici Mathematici},
     pages = {1--28},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2013},
     doi = {10.4064/ap107-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-1/}
}
TY  - JOUR
AU  - Chia-chi Tung
TI  - On Noether and strict stability,
Hilbert
exponent, and relative Nullstellensatz
JO  - Annales Polonici Mathematici
PY  - 2013
SP  - 1
EP  - 28
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-1/
DO  - 10.4064/ap107-1-1
LA  - en
ID  - 10_4064_ap107_1_1
ER  - 
%0 Journal Article
%A Chia-chi Tung
%T On Noether and strict stability,
Hilbert
exponent, and relative Nullstellensatz
%J Annales Polonici Mathematici
%D 2013
%P 1-28
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-1/
%R 10.4064/ap107-1-1
%G en
%F 10_4064_ap107_1_1
Chia-chi Tung. On Noether and strict stability,
Hilbert
exponent, and relative Nullstellensatz. Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 1-28. doi : 10.4064/ap107-1-1. http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-1/

Cité par Sources :