On Noether and strict stability,
Hilbert
exponent, and relative Nullstellensatz
Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 1-28
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Conditions characterizing the
membership of the ideal of a subvariety
${\mathfrak S}$ arising from (effective)
divisors in a product complex space $Y
\times X$ are given. For the algebra
${\mathcal O}_Y [V]$ of relative regular
functions on an algebraic variety $V$,
the strict stability is proved, in the
case where $Y$ is a normal space, and
the Noether stability is established under a
weakened condition. As a consequence (for
both general and complete intersections)
a global Nullstellensatz is derived for
divisors in $Y\times {\mathbb C}^N$,
respectively, $Y\times {\mathbb P}^N
({\mathbb C})$. Also obtained are a
principal ideal theorem for relative
divisors, a generalization of the Gauss
decomposition rule, and characterizations
of solid pseudospherical harmonics on a
semi-Riemann domain. A result towards a
more general case is as follows: Let
${\mathfrak D}_j$, $1 \le j\le p$, be
principal divisors in $X$ associated
to the components of a $q$-weakly normal
map $g = (g_1,\ldots,g_p) : X \to
{\mathbb C}^p$, and $S := \bigcap
{\mathfrak S}_{|{\mathfrak D}_j|}$. Then
for any proper slicing $(\varphi,g,D)$
of $\{{\mathfrak D}_j\}_{1\le j\le p}$
(where $D\subset X$ is a relatively
compact open subset), there exists an
explicitly determined Hilbert exponent
${\mathfrak h}_{_{{\mathfrak D}_1
\cdots {\mathfrak D}_p,D}}$ for the
ideal of the subvariety ${\mathfrak S}
= Y\times (S\cap D)$.
Keywords:
conditions characterizing membership ideal subvariety mathfrak arising effective divisors product complex space times given algebra mathcal relative regular functions algebraic variety strict stability proved where normal space noether stability established under weakened condition consequence general complete intersections global nullstellensatz derived divisors times mathbb respectively times mathbb mathbb obtained principal ideal theorem relative divisors generalization gauss decomposition rule characterizations solid pseudospherical harmonics semi riemann domain result towards general follows mathfrak principal divisors associated components q weakly normal map ldots mathbb bigcap mathfrak mathfrak proper slicing varphi mathfrak where subset relatively compact subset there exists explicitly determined hilbert exponent mathfrak mathfrak cdots mathfrak ideal subvariety mathfrak times cap
Affiliations des auteurs :
Chia-chi Tung 1
@article{10_4064_ap107_1_1,
author = {Chia-chi Tung},
title = {On {Noether} and strict {stability,
Hilbert
exponent,} and relative {Nullstellensatz}},
journal = {Annales Polonici Mathematici},
pages = {1--28},
publisher = {mathdoc},
volume = {107},
number = {1},
year = {2013},
doi = {10.4064/ap107-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-1/}
}
TY - JOUR AU - Chia-chi Tung TI - On Noether and strict stability, Hilbert exponent, and relative Nullstellensatz JO - Annales Polonici Mathematici PY - 2013 SP - 1 EP - 28 VL - 107 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap107-1-1/ DO - 10.4064/ap107-1-1 LA - en ID - 10_4064_ap107_1_1 ER -
Chia-chi Tung. On Noether and strict stability, Hilbert exponent, and relative Nullstellensatz. Annales Polonici Mathematici, Tome 107 (2013) no. 1, pp. 1-28. doi: 10.4064/ap107-1-1
Cité par Sources :