A criterion of asymptotic stability for Markov–Feller e-chains on Polish spaces
Annales Polonici Mathematici, Tome 105 (2012) no. 3, pp. 267-291
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Stettner [Bull. Polish Acad. Sci. Math. 42 (1994)] considered the asymptotic stability of Markov–Feller chains, provided the sequence of transition probabilities of the chain converges to an invariant probability measure in the weak sense and converges uniformly with respect to the initial state variable on compact sets. We extend those results to the setting of Polish spaces and relax the original assumptions. Finally, we present a class of Markov–Feller chains with a linear state space model which satisfy the assumptions of our main theorem.
Keywords:
stettner bull polish acad sci math considered asymptotic stability markov feller chains provided sequence transition probabilities chain converges invariant probability measure weak sense converges uniformly respect initial state variable compact sets extend those results setting polish spaces relax original assumptions finally present class markov feller chains linear state space model which satisfy assumptions main theorem
Affiliations des auteurs :
Dawid Czapla 1
@article{10_4064_ap105_3_5,
author = {Dawid Czapla},
title = {A criterion of asymptotic stability for {Markov{\textendash}Feller} e-chains on {Polish} spaces},
journal = {Annales Polonici Mathematici},
pages = {267--291},
year = {2012},
volume = {105},
number = {3},
doi = {10.4064/ap105-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-3-5/}
}
TY - JOUR AU - Dawid Czapla TI - A criterion of asymptotic stability for Markov–Feller e-chains on Polish spaces JO - Annales Polonici Mathematici PY - 2012 SP - 267 EP - 291 VL - 105 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap105-3-5/ DO - 10.4064/ap105-3-5 LA - en ID - 10_4064_ap105_3_5 ER -
Dawid Czapla. A criterion of asymptotic stability for Markov–Feller e-chains on Polish spaces. Annales Polonici Mathematici, Tome 105 (2012) no. 3, pp. 267-291. doi: 10.4064/ap105-3-5
Cité par Sources :