Weighted Bernstein–Markov property in $\mathbb{C}^n$
Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 101-123.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the weighted Bernstein–Markov property for subsets in $\mathbb C^n$ which might not be bounded. An application concerning approximation of the weighted Green function using Bergman kernels is also given.
DOI : 10.4064/ap105-2-1
Keywords: study weighted bernstein markov property subsets mathbb which might bounded application concerning approximation weighted green function using bergman kernels given

Nguyen Quang Dieu 1 ; Pham Hoang Hiep 1

1 Department of Mathematics HaNoi National University of Education 136 Xuan Thuy, Cau Giay, Ha Noi, Vietnam
@article{10_4064_ap105_2_1,
     author = {Nguyen Quang Dieu and Pham Hoang Hiep},
     title = {Weighted {Bernstein{\textendash}Markov} property in $\mathbb{C}^n$},
     journal = {Annales Polonici Mathematici},
     pages = {101--123},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2012},
     doi = {10.4064/ap105-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-1/}
}
TY  - JOUR
AU  - Nguyen Quang Dieu
AU  - Pham Hoang Hiep
TI  - Weighted Bernstein–Markov property in $\mathbb{C}^n$
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 101
EP  - 123
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-1/
DO  - 10.4064/ap105-2-1
LA  - en
ID  - 10_4064_ap105_2_1
ER  - 
%0 Journal Article
%A Nguyen Quang Dieu
%A Pham Hoang Hiep
%T Weighted Bernstein–Markov property in $\mathbb{C}^n$
%J Annales Polonici Mathematici
%D 2012
%P 101-123
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-1/
%R 10.4064/ap105-2-1
%G en
%F 10_4064_ap105_2_1
Nguyen Quang Dieu; Pham Hoang Hiep. Weighted Bernstein–Markov property in $\mathbb{C}^n$. Annales Polonici Mathematici, Tome 105 (2012) no. 2, pp. 101-123. doi : 10.4064/ap105-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ap105-2-1/

Cité par Sources :