Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Chao Ji 1 ; Fei Fang 2
@article{10_4064_ap105_1_8, author = {Chao Ji and Fei Fang}, title = {Infinitely many solutions for the $p(x)${-Laplacian} equations without {(AR)-type} growth condition}, journal = {Annales Polonici Mathematici}, pages = {87--99}, publisher = {mathdoc}, volume = {105}, number = {1}, year = {2012}, doi = {10.4064/ap105-1-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/} }
TY - JOUR AU - Chao Ji AU - Fei Fang TI - Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition JO - Annales Polonici Mathematici PY - 2012 SP - 87 EP - 99 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/ DO - 10.4064/ap105-1-8 LA - en ID - 10_4064_ap105_1_8 ER -
%0 Journal Article %A Chao Ji %A Fei Fang %T Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition %J Annales Polonici Mathematici %D 2012 %P 87-99 %V 105 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/ %R 10.4064/ap105-1-8 %G en %F 10_4064_ap105_1_8
Chao Ji; Fei Fang. Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition. Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 87-99. doi : 10.4064/ap105-1-8. http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/
Cité par Sources :