Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition
Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 87-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Under no Ambrosetti–Rabinowitz-type growth condition, we study the existence of infinitely many solutions of the $p(x)$-Laplacian equations by applying the variant fountain theorems due to Zou [Manuscripta Math. 104 (2001), 343–358].
Keywords:
under ambrosetti rabinowitz type growth condition study existence infinitely many solutions laplacian equations applying variant fountain theorems due zou manuscripta math
Affiliations des auteurs :
Chao Ji 1 ; Fei Fang 2
@article{10_4064_ap105_1_8,
author = {Chao Ji and Fei Fang},
title = {Infinitely many solutions for the $p(x)${-Laplacian} equations without {(AR)-type} growth condition},
journal = {Annales Polonici Mathematici},
pages = {87--99},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2012},
doi = {10.4064/ap105-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/}
}
TY - JOUR AU - Chao Ji AU - Fei Fang TI - Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition JO - Annales Polonici Mathematici PY - 2012 SP - 87 EP - 99 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/ DO - 10.4064/ap105-1-8 LA - en ID - 10_4064_ap105_1_8 ER -
%0 Journal Article %A Chao Ji %A Fei Fang %T Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition %J Annales Polonici Mathematici %D 2012 %P 87-99 %V 105 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-8/ %R 10.4064/ap105-1-8 %G en %F 10_4064_ap105_1_8
Chao Ji; Fei Fang. Infinitely many solutions for the $p(x)$-Laplacian equations without (AR)-type growth condition. Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 87-99. doi: 10.4064/ap105-1-8
Cité par Sources :