Decompositions and asymptotic limit for bicontractions
Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 43-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The asymptotic limit of a bicontraction $T$ (that is, a pair of
commuting contractions) on a Hilbert space $\mathcal{H}$ is used to describe a
Nagy–Foiaş–Langer type decomposition of $T$. This decomposition
is refined in the case when the asymptotic limit of $T$ is an
orthogonal projection. The case of a bicontraction $T$ consisting of
hyponormal (even quasinormal) contractions is also considered, where
we have $S_{T^*}=S_{T^*}^2$.
Keywords:
asymptotic limit bicontraction pair commuting contractions hilbert space mathcal describe nagy foia langer type decomposition decomposition refined asymptotic limit orthogonal projection bicontraction consisting hyponormal even quasinormal contractions considered where have * *
Affiliations des auteurs :
Marek Kosiek 1 ; Laurian Suciu 2
@article{10_4064_ap105_1_5,
author = {Marek Kosiek and Laurian Suciu},
title = {Decompositions and asymptotic limit for bicontractions},
journal = {Annales Polonici Mathematici},
pages = {43--64},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2012},
doi = {10.4064/ap105-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-5/}
}
TY - JOUR AU - Marek Kosiek AU - Laurian Suciu TI - Decompositions and asymptotic limit for bicontractions JO - Annales Polonici Mathematici PY - 2012 SP - 43 EP - 64 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-5/ DO - 10.4064/ap105-1-5 LA - en ID - 10_4064_ap105_1_5 ER -
Marek Kosiek; Laurian Suciu. Decompositions and asymptotic limit for bicontractions. Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 43-64. doi: 10.4064/ap105-1-5
Cité par Sources :