A note on the plane Jacobian conjecture
Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 13-19
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that every polynomial function
$P:\mathbb{C}^2\to\mathbb{C}$ with irreducible fibres
of the same genus must be a coordinate. Consequently, there do not
exist counterexamples $F=(P,Q)$ to the Jacobian conjecture such
that all fibres of $P$ are irreducible curves with the same genus.
Keywords:
shown every polynomial function mathbb mathbb irreducible fibres genus coordinate consequently there exist counterexamples jacobian conjecture fibres irreducible curves genus
Affiliations des auteurs :
Nguyen Van Chau 1
@article{10_4064_ap105_1_2,
author = {Nguyen Van Chau},
title = {A note on the plane {Jacobian} conjecture},
journal = {Annales Polonici Mathematici},
pages = {13--19},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2012},
doi = {10.4064/ap105-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap105-1-2/}
}
Nguyen Van Chau. A note on the plane Jacobian conjecture. Annales Polonici Mathematici, Tome 105 (2012) no. 1, pp. 13-19. doi: 10.4064/ap105-1-2
Cité par Sources :