Existence and asymptotic behavior of positive
solutions for elliptic systems with nonstandard growth
conditions
Annales Polonici Mathematici, Tome 104 (2012) no. 3, pp. 293-308
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Our main purpose is to establish the
existence of a positive solution of the system
$$\begin{cases}
-\triangle_{p(x)} u= F(x,u,v),\in \Omega,\\
-\triangle_{q(x)} v= H(x,u,v),\in \Omega,\\
u=v=0,\in\partial\Omega,
\end{cases}
$$
where $\Omega\subset {\mathbb R}^N$ is a bounded domain with
$C^2$ boundary, $F(x,u,v)=\lambda^{p(x)}[g(x)a(u)+f(v)]$,
$H(x,u,v)=\lambda^{q(x)} [g(x)b(v)+h(u)]$, $\lambda>0$ is a
parameter, $p(x), q(x)$ are functions which satisfy some
conditions, and $-\triangle_{p(x)}u=-\mbox{div}(|\nabla
u|^{p(x)-2}\nabla u)$ is called the $p(x)$-Laplacian. We give
existence results and consider the asymptotic behavior of
solutions near the boundary. We do not assume any
symmetry conditions on the system.
Keywords:
main purpose establish existence positive solution system begin cases triangle v omega triangle v omega partial omega end cases where omega subset mathbb bounded domain boundary v lambda u v lambda v lambda parameter functions which satisfy conditions triangle mbox div nabla nabla called laplacian existence results consider asymptotic behavior solutions near boundary assume symmetry conditions system
Affiliations des auteurs :
Honghui Yin 1 ; Zuodong Yang 2
@article{10_4064_ap104_3_6,
author = {Honghui Yin and Zuodong Yang},
title = {Existence and asymptotic behavior of positive
solutions for elliptic systems with nonstandard growth
conditions},
journal = {Annales Polonici Mathematici},
pages = {293--308},
publisher = {mathdoc},
volume = {104},
number = {3},
year = {2012},
doi = {10.4064/ap104-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/}
}
TY - JOUR AU - Honghui Yin AU - Zuodong Yang TI - Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions JO - Annales Polonici Mathematici PY - 2012 SP - 293 EP - 308 VL - 104 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/ DO - 10.4064/ap104-3-6 LA - en ID - 10_4064_ap104_3_6 ER -
%0 Journal Article %A Honghui Yin %A Zuodong Yang %T Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions %J Annales Polonici Mathematici %D 2012 %P 293-308 %V 104 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/ %R 10.4064/ap104-3-6 %G en %F 10_4064_ap104_3_6
Honghui Yin; Zuodong Yang. Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions. Annales Polonici Mathematici, Tome 104 (2012) no. 3, pp. 293-308. doi: 10.4064/ap104-3-6
Cité par Sources :