Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions
Annales Polonici Mathematici, Tome 104 (2012) no. 3, pp. 293-308.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Our main purpose is to establish the existence of a positive solution of the system $$\begin{cases} -\triangle_{p(x)} u= F(x,u,v),\in \Omega,\\ -\triangle_{q(x)} v= H(x,u,v),\in \Omega,\\ u=v=0,\in\partial\Omega, \end{cases} $$ where $\Omega\subset {\mathbb R}^N$ is a bounded domain with $C^2$ boundary, $F(x,u,v)=\lambda^{p(x)}[g(x)a(u)+f(v)]$, $H(x,u,v)=\lambda^{q(x)} [g(x)b(v)+h(u)]$, $\lambda>0$ is a parameter, $p(x), q(x)$ are functions which satisfy some conditions, and $-\triangle_{p(x)}u=-\mbox{div}(|\nabla u|^{p(x)-2}\nabla u)$ is called the $p(x)$-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.
DOI : 10.4064/ap104-3-6
Keywords: main purpose establish existence positive solution system begin cases triangle v omega triangle v omega partial omega end cases where omega subset mathbb bounded domain boundary v lambda u v lambda v lambda parameter functions which satisfy conditions triangle mbox div nabla nabla called laplacian existence results consider asymptotic behavior solutions near boundary assume symmetry conditions system

Honghui Yin 1 ; Zuodong Yang 2

1 Institute of Mathematics School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China and School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223001, China
2 Institute of Mathematics School of Mathematical Sciences Nanjing Normal University Nanjing, Jiangsu 210046, China and College of Zhongbei Nanjing Normal University Nanjing, Jiangsu 210046, China
@article{10_4064_ap104_3_6,
     author = {Honghui Yin and Zuodong Yang},
     title = {Existence and asymptotic behavior of positive
solutions for elliptic systems with nonstandard growth
conditions},
     journal = {Annales Polonici Mathematici},
     pages = {293--308},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2012},
     doi = {10.4064/ap104-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/}
}
TY  - JOUR
AU  - Honghui Yin
AU  - Zuodong Yang
TI  - Existence and asymptotic behavior of positive
solutions for elliptic systems with nonstandard growth
conditions
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 293
EP  - 308
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/
DO  - 10.4064/ap104-3-6
LA  - en
ID  - 10_4064_ap104_3_6
ER  - 
%0 Journal Article
%A Honghui Yin
%A Zuodong Yang
%T Existence and asymptotic behavior of positive
solutions for elliptic systems with nonstandard growth
conditions
%J Annales Polonici Mathematici
%D 2012
%P 293-308
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/
%R 10.4064/ap104-3-6
%G en
%F 10_4064_ap104_3_6
Honghui Yin; Zuodong Yang. Existence and asymptotic behavior of positive
solutions for elliptic systems with nonstandard growth
conditions. Annales Polonici Mathematici, Tome 104 (2012) no. 3, pp. 293-308. doi : 10.4064/ap104-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-6/

Cité par Sources :