Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Shapour Heidarkhani 1 ; Yu Tian 2 ; Chun-Lei Tang 3
@article{10_4064_ap104_3_4, author = {Shapour Heidarkhani and Yu Tian and Chun-Lei Tang}, title = {Existence of three solutions for a class of $(p_1,\ldots,p_n)$-biharmonic systems with {Navier} boundary conditions}, journal = {Annales Polonici Mathematici}, pages = {261--277}, publisher = {mathdoc}, volume = {104}, number = {3}, year = {2012}, doi = {10.4064/ap104-3-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-4/} }
TY - JOUR AU - Shapour Heidarkhani AU - Yu Tian AU - Chun-Lei Tang TI - Existence of three solutions for a class of $(p_1,\ldots,p_n)$-biharmonic systems with Navier boundary conditions JO - Annales Polonici Mathematici PY - 2012 SP - 261 EP - 277 VL - 104 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-4/ DO - 10.4064/ap104-3-4 LA - en ID - 10_4064_ap104_3_4 ER -
%0 Journal Article %A Shapour Heidarkhani %A Yu Tian %A Chun-Lei Tang %T Existence of three solutions for a class of $(p_1,\ldots,p_n)$-biharmonic systems with Navier boundary conditions %J Annales Polonici Mathematici %D 2012 %P 261-277 %V 104 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-4/ %R 10.4064/ap104-3-4 %G en %F 10_4064_ap104_3_4
Shapour Heidarkhani; Yu Tian; Chun-Lei Tang. Existence of three solutions for a class of $(p_1,\ldots,p_n)$-biharmonic systems with Navier boundary conditions. Annales Polonici Mathematici, Tome 104 (2012) no. 3, pp. 261-277. doi : 10.4064/ap104-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap104-3-4/
Cité par Sources :