The rigidity theorem for Landsberg hypersurfaces of a Minkowski space
Annales Polonici Mathematici, Tome 104 (2012) no. 2, pp. 153-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M^n$ be a compact Landsberg hypersurface of a Minkowski space $(V^{n+1}, \overline {F})$ with constant mean curvature $H$. Using the Gauss formula for the Chern connection of Finsler submanifolds, we prove that if $M$ is convex, then $M$ is Riemannian with constant curvature.
DOI : 10.4064/ap104-2-3
Keywords: compact landsberg hypersurface minkowski space overline constant mean curvature using gauss formula chern connection finsler submanifolds prove convex riemannian constant curvature

Jin Tang Li 1

1 School of Mathematical Sciences Xiamen University 361005 Xiamen, Fujian, China
@article{10_4064_ap104_2_3,
     author = {Jin Tang Li},
     title = {The rigidity theorem for {Landsberg} hypersurfaces
 of a {Minkowski} space},
     journal = {Annales Polonici Mathematici},
     pages = {153--160},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2012},
     doi = {10.4064/ap104-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-2-3/}
}
TY  - JOUR
AU  - Jin Tang Li
TI  - The rigidity theorem for Landsberg hypersurfaces
 of a Minkowski space
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 153
EP  - 160
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap104-2-3/
DO  - 10.4064/ap104-2-3
LA  - en
ID  - 10_4064_ap104_2_3
ER  - 
%0 Journal Article
%A Jin Tang Li
%T The rigidity theorem for Landsberg hypersurfaces
 of a Minkowski space
%J Annales Polonici Mathematici
%D 2012
%P 153-160
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap104-2-3/
%R 10.4064/ap104-2-3
%G en
%F 10_4064_ap104_2_3
Jin Tang Li. The rigidity theorem for Landsberg hypersurfaces
 of a Minkowski space. Annales Polonici Mathematici, Tome 104 (2012) no. 2, pp. 153-160. doi : 10.4064/ap104-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ap104-2-3/

Cité par Sources :