The rigidity theorem for Landsberg hypersurfaces
of a Minkowski space
Annales Polonici Mathematici, Tome 104 (2012) no. 2, pp. 153-160
Let $M^n$ be a compact Landsberg hypersurface of a Minkowski space $(V^{n+1}, \overline {F})$ with constant mean curvature $H$. Using the Gauss formula for the Chern connection of Finsler submanifolds, we prove that if $M$ is convex, then $M$ is Riemannian with constant curvature.
Keywords:
compact landsberg hypersurface minkowski space overline constant mean curvature using gauss formula chern connection finsler submanifolds prove convex riemannian constant curvature
Affiliations des auteurs :
Jin Tang Li  1
@article{10_4064_ap104_2_3,
author = {Jin Tang Li},
title = {The rigidity theorem for {Landsberg} hypersurfaces
of a {Minkowski} space},
journal = {Annales Polonici Mathematici},
pages = {153--160},
year = {2012},
volume = {104},
number = {2},
doi = {10.4064/ap104-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-2-3/}
}
Jin Tang Li. The rigidity theorem for Landsberg hypersurfaces of a Minkowski space. Annales Polonici Mathematici, Tome 104 (2012) no. 2, pp. 153-160. doi: 10.4064/ap104-2-3
Cité par Sources :