Entire functions that share a function
with their first and second derivatives
Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 81-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Applying the normal family theory and the theory of complex differential equations, we obtain a uniqueness theorem for entire functions that share a function with their first and second derivative, which generalizes several related results of G. Jank, E. Mues L. Volkmann (1986), C. M. Chang M. L. Fang (2002) and I. Lahiri G. K. Ghosh (2009).
Keywords:
applying normal family theory theory complex differential equations obtain uniqueness theorem entire functions share function their first second derivative which generalizes several related results nbsp jank nbsp mues amp nbsp volkmann nbsp chang amp nbsp fang nbsp lahiri amp nbsp ghosh
Affiliations des auteurs :
Feng Lü 1 ; Junfeng Xu 2
@article{10_4064_ap104_1_6,
author = {Feng L\"u and Junfeng Xu},
title = {Entire functions that share a function
with their first and second derivatives},
journal = {Annales Polonici Mathematici},
pages = {81--96},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {2012},
doi = {10.4064/ap104-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-6/}
}
TY - JOUR AU - Feng Lü AU - Junfeng Xu TI - Entire functions that share a function with their first and second derivatives JO - Annales Polonici Mathematici PY - 2012 SP - 81 EP - 96 VL - 104 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-6/ DO - 10.4064/ap104-1-6 LA - en ID - 10_4064_ap104_1_6 ER -
%0 Journal Article %A Feng Lü %A Junfeng Xu %T Entire functions that share a function with their first and second derivatives %J Annales Polonici Mathematici %D 2012 %P 81-96 %V 104 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-6/ %R 10.4064/ap104-1-6 %G en %F 10_4064_ap104_1_6
Feng Lü; Junfeng Xu. Entire functions that share a function with their first and second derivatives. Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 81-96. doi: 10.4064/ap104-1-6
Cité par Sources :