A framed $f$-structure on the tangent bundle of a Finsler manifold
Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 23-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(M,F)$ be a Finsler manifold, that is, $M$ is a smooth manifold endowed with a Finsler metric $F$. In this paper, we introduce on the slit tangent bundle $\widetilde{TM}$ a Riemannian metric $\widetilde{G}$ which is naturally induced by $F$, and a family of framed $f$-structures which are parameterized by a real parameter $c\neq 0$. We prove that (i) the parameterized framed $f$-structure reduces to an almost contact structure on $IM$; (ii) the almost contact structure on $IM$ is a Sasakian structure iff $(M,F)$ is of constant flag curvature $K=c;$ (iii) if $\mathcal{S}=y^i\delta_i$ is the geodesic spray of $F$ and $R(\cdot,\cdot)$ the curvature operator of the Sasaki–Finsler metric which is induced by $F$, then $R(\cdot,\cdot)\mathcal{S}=0$ iff $(M,F)$ is a locally flat Riemannian manifold.
DOI : 10.4064/ap104-1-3
Keywords: finsler manifold smooth manifold endowed finsler metric paper introduce slit tangent bundle widetilde riemannian metric widetilde which naturally induced family framed f structures which parameterized real parameter neq prove nbsp parameterized framed f structure reduces almost contact structure nbsp nbsp almost contact structure sasakian structure constant flag curvature iii nbsp mathcal delta geodesic spray cdot cdot curvature operator sasaki finsler metric which induced cdot cdot mathcal locally flat riemannian manifold

Esmaeil Peyghan 1 ; Chunping Zhong 2

1 Department of Mathematics Faculty of Science Arak University Arak 38156-8-8349, Iran
2 School of Mathematical Sciences Xiamen University Xiamen 361005, China
@article{10_4064_ap104_1_3,
     author = {Esmaeil Peyghan and Chunping Zhong},
     title = {A framed $f$-structure on the tangent bundle of a {Finsler} manifold},
     journal = {Annales Polonici Mathematici},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {2012},
     doi = {10.4064/ap104-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/}
}
TY  - JOUR
AU  - Esmaeil Peyghan
AU  - Chunping Zhong
TI  - A framed $f$-structure on the tangent bundle of a Finsler manifold
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 23
EP  - 41
VL  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/
DO  - 10.4064/ap104-1-3
LA  - en
ID  - 10_4064_ap104_1_3
ER  - 
%0 Journal Article
%A Esmaeil Peyghan
%A Chunping Zhong
%T A framed $f$-structure on the tangent bundle of a Finsler manifold
%J Annales Polonici Mathematici
%D 2012
%P 23-41
%V 104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/
%R 10.4064/ap104-1-3
%G en
%F 10_4064_ap104_1_3
Esmaeil Peyghan; Chunping Zhong. A framed $f$-structure on the tangent bundle of a Finsler manifold. Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 23-41. doi : 10.4064/ap104-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/

Cité par Sources :