A framed $f$-structure on the tangent bundle of a Finsler manifold
Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 23-41
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(M,F)$ be a Finsler manifold, that is, $M$ is a smooth manifold
endowed with a Finsler metric $F$. In this paper, we introduce on
the slit tangent bundle $\widetilde{TM}$ a Riemannian metric
$\widetilde{G}$ which is naturally induced by $F$,
and a family of framed
$f$-structures which are parameterized by a real parameter $c\neq
0$. We prove that (i) the parameterized framed $f$-structure
reduces to an almost contact structure on $IM$; (ii) the almost contact structure on $IM$
is a Sasakian structure iff $(M,F)$ is of
constant flag curvature $K=c;$ (iii) if $\mathcal{S}=y^i\delta_i$
is the geodesic spray of $F$ and $R(\cdot,\cdot)$ the curvature
operator of the Sasaki–Finsler metric which is induced by $F$, then
$R(\cdot,\cdot)\mathcal{S}=0$ iff $(M,F)$ is a locally flat
Riemannian manifold.
Keywords:
finsler manifold smooth manifold endowed finsler metric paper introduce slit tangent bundle widetilde riemannian metric widetilde which naturally induced family framed f structures which parameterized real parameter neq prove nbsp parameterized framed f structure reduces almost contact structure nbsp nbsp almost contact structure sasakian structure constant flag curvature iii nbsp mathcal delta geodesic spray cdot cdot curvature operator sasaki finsler metric which induced cdot cdot mathcal locally flat riemannian manifold
Affiliations des auteurs :
Esmaeil Peyghan 1 ; Chunping Zhong 2
@article{10_4064_ap104_1_3,
author = {Esmaeil Peyghan and Chunping Zhong},
title = {A framed $f$-structure on the tangent bundle of a {Finsler} manifold},
journal = {Annales Polonici Mathematici},
pages = {23--41},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {2012},
doi = {10.4064/ap104-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/}
}
TY - JOUR AU - Esmaeil Peyghan AU - Chunping Zhong TI - A framed $f$-structure on the tangent bundle of a Finsler manifold JO - Annales Polonici Mathematici PY - 2012 SP - 23 EP - 41 VL - 104 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/ DO - 10.4064/ap104-1-3 LA - en ID - 10_4064_ap104_1_3 ER -
%0 Journal Article %A Esmaeil Peyghan %A Chunping Zhong %T A framed $f$-structure on the tangent bundle of a Finsler manifold %J Annales Polonici Mathematici %D 2012 %P 23-41 %V 104 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap104-1-3/ %R 10.4064/ap104-1-3 %G en %F 10_4064_ap104_1_3
Esmaeil Peyghan; Chunping Zhong. A framed $f$-structure on the tangent bundle of a Finsler manifold. Annales Polonici Mathematici, Tome 104 (2012) no. 1, pp. 23-41. doi: 10.4064/ap104-1-3
Cité par Sources :