Convergence in capacity on smooth hypersurfaces
of compact Kähler manifolds
Annales Polonici Mathematici, Tome 103 (2012) no. 2, pp. 175-187
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study restrictions of $\omega $-plurisubharmonic functions to a smooth hypersurface $S$ in a compact Kähler manifold $X$. The result obtained and the characterization of convergence in capacity due to S. Dinew and P. H. Hiep [to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci.] are used to study convergence in capacity on $S$.
Keywords:
study restrictions omega plurisubharmonic functions smooth hypersurface compact hler manifold result obtained characterization convergence capacity due dinew hiep appear ann scuola norm sup pisa sci study convergence capacity
Affiliations des auteurs :
Vu Viet Hung 1 ; Hoang Nhat Quy 2
@article{10_4064_ap103_2_5,
author = {Vu Viet Hung and Hoang Nhat Quy},
title = {Convergence in capacity on smooth hypersurfaces
of compact {K\"ahler} manifolds},
journal = {Annales Polonici Mathematici},
pages = {175--187},
year = {2012},
volume = {103},
number = {2},
doi = {10.4064/ap103-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap103-2-5/}
}
TY - JOUR AU - Vu Viet Hung AU - Hoang Nhat Quy TI - Convergence in capacity on smooth hypersurfaces of compact Kähler manifolds JO - Annales Polonici Mathematici PY - 2012 SP - 175 EP - 187 VL - 103 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap103-2-5/ DO - 10.4064/ap103-2-5 LA - en ID - 10_4064_ap103_2_5 ER -
%0 Journal Article %A Vu Viet Hung %A Hoang Nhat Quy %T Convergence in capacity on smooth hypersurfaces of compact Kähler manifolds %J Annales Polonici Mathematici %D 2012 %P 175-187 %V 103 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap103-2-5/ %R 10.4064/ap103-2-5 %G en %F 10_4064_ap103_2_5
Vu Viet Hung; Hoang Nhat Quy. Convergence in capacity on smooth hypersurfaces of compact Kähler manifolds. Annales Polonici Mathematici, Tome 103 (2012) no. 2, pp. 175-187. doi: 10.4064/ap103-2-5
Cité par Sources :