Three periodic solutions for an
ordinary differential inclusion with two parameters
Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 89-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Applying a nonsmooth version of a three critical points theorem of Ricceri, we prove the existence of three periodic solutions for an ordinary differential inclusion depending on two parameters.
Keywords:
applying nonsmooth version three critical points theorem ricceri prove existence three periodic solutions ordinary differential inclusion depending parameters
Affiliations des auteurs :
Antonio Iannizzotto 1
@article{10_4064_ap103_1_7,
author = {Antonio Iannizzotto},
title = {Three periodic solutions for an
ordinary differential inclusion with two parameters},
journal = {Annales Polonici Mathematici},
pages = {89--100},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2012},
doi = {10.4064/ap103-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-7/}
}
TY - JOUR AU - Antonio Iannizzotto TI - Three periodic solutions for an ordinary differential inclusion with two parameters JO - Annales Polonici Mathematici PY - 2012 SP - 89 EP - 100 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-7/ DO - 10.4064/ap103-1-7 LA - en ID - 10_4064_ap103_1_7 ER -
%0 Journal Article %A Antonio Iannizzotto %T Three periodic solutions for an ordinary differential inclusion with two parameters %J Annales Polonici Mathematici %D 2012 %P 89-100 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-7/ %R 10.4064/ap103-1-7 %G en %F 10_4064_ap103_1_7
Antonio Iannizzotto. Three periodic solutions for an ordinary differential inclusion with two parameters. Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 89-100. doi: 10.4064/ap103-1-7
Cité par Sources :