Landau's theorem for
$p$-harmonic mappings in several variables
Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 67-87
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A $2p$-times continuously differentiable complex-valued function
$f=u+iv$ in a domain $D\subseteq\mathbb{C}$ is $p$-harmonic if $f$
satisfies the $p$-harmonic equation $\varDelta^pf=0$, where $p$ $(\geq
1)$ is a positive integer and $\varDelta$ represents the complex
Laplacian operator. If $\varOmega\subset\mathbb{C}^{n}$ is a domain,
then a function $f:\,\varOmega\rightarrow\mathbb{C}^m$ is said to be
$p$-harmonic in $\varOmega$ if each component function $f_i$ ($i\in
\{1, \ldots, m\}$) of $f=(f_1,\ldots, f_m)$ is $p$-harmonic with
respect to each variable separately. In this paper, we prove
Landau and Bloch's theorem for a class of $p$-harmonic mappings $f$
from the unit ball $\mathbb{B}^{n}$ into $\mathbb{C}^{n}$ with the
form
$$f(z)=\sum_{(k_{1},\ldots, k_{n})=(1,\ldots,1)}^{(p,\ldots,p)}|z_{1}|^{2(k_{1}-1)}
\cdots|z_{n}|^{2(k_{n}-1)}G_{p-k_{1}+1,\ldots, p-k_{n}+1}(z),
$$
where each $G_{p-k_{1}+1,\ldots, p-k_{n}+1}$ is harmonic in $\mathbb{B}^{n}$ for $k_{i}\in\{1,\ldots,p\}$ and
$i\in\{1, \ldots, n\}$.
Keywords:
p times continuously differentiable complex valued function domain subseteq mathbb p harmonic satisfies p harmonic equation vardelta where geq positive integer vardelta represents complex laplacian operator varomega subset mathbb domain function varomega rightarrow mathbb said p harmonic varomega each component function ldots ldots p harmonic respect each variable separately paper prove landau blochs theorem class p harmonic mappings unit ball mathbb mathbb form sum ldots ldots ldots cdots p k ldots p k where each p k ldots p k harmonic mathbb ldots ldots
Affiliations des auteurs :
Sh. Chen 1 ; S. Ponnusamy 2 ; X. Wang 1
@article{10_4064_ap103_1_6,
author = {Sh. Chen and S. Ponnusamy and X. Wang},
title = {Landau's theorem for
$p$-harmonic mappings in several variables},
journal = {Annales Polonici Mathematici},
pages = {67--87},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2012},
doi = {10.4064/ap103-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/}
}
TY - JOUR AU - Sh. Chen AU - S. Ponnusamy AU - X. Wang TI - Landau's theorem for $p$-harmonic mappings in several variables JO - Annales Polonici Mathematici PY - 2012 SP - 67 EP - 87 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/ DO - 10.4064/ap103-1-6 LA - en ID - 10_4064_ap103_1_6 ER -
%0 Journal Article %A Sh. Chen %A S. Ponnusamy %A X. Wang %T Landau's theorem for $p$-harmonic mappings in several variables %J Annales Polonici Mathematici %D 2012 %P 67-87 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/ %R 10.4064/ap103-1-6 %G en %F 10_4064_ap103_1_6
Sh. Chen; S. Ponnusamy; X. Wang. Landau's theorem for $p$-harmonic mappings in several variables. Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 67-87. doi: 10.4064/ap103-1-6
Cité par Sources :