Landau's theorem for $p$-harmonic mappings in several variables
Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 67-87.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A $2p$-times continuously differentiable complex-valued function $f=u+iv$ in a domain $D\subseteq\mathbb{C}$ is $p$-harmonic if $f$ satisfies the $p$-harmonic equation $\varDelta^pf=0$, where $p$ $(\geq 1)$ is a positive integer and $\varDelta$ represents the complex Laplacian operator. If $\varOmega\subset\mathbb{C}^{n}$ is a domain, then a function $f:\,\varOmega\rightarrow\mathbb{C}^m$ is said to be $p$-harmonic in $\varOmega$ if each component function $f_i$ ($i\in \{1, \ldots, m\}$) of $f=(f_1,\ldots, f_m)$ is $p$-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch's theorem for a class of $p$-harmonic mappings $f$ from the unit ball $\mathbb{B}^{n}$ into $\mathbb{C}^{n}$ with the form $$f(z)=\sum_{(k_{1},\ldots, k_{n})=(1,\ldots,1)}^{(p,\ldots,p)}|z_{1}|^{2(k_{1}-1)} \cdots|z_{n}|^{2(k_{n}-1)}G_{p-k_{1}+1,\ldots, p-k_{n}+1}(z), $$ where each $G_{p-k_{1}+1,\ldots, p-k_{n}+1}$ is harmonic in $\mathbb{B}^{n}$ for $k_{i}\in\{1,\ldots,p\}$ and $i\in\{1, \ldots, n\}$.
DOI : 10.4064/ap103-1-6
Keywords: p times continuously differentiable complex valued function domain subseteq mathbb p harmonic satisfies p harmonic equation vardelta where geq positive integer vardelta represents complex laplacian operator varomega subset mathbb domain function varomega rightarrow mathbb said p harmonic varomega each component function ldots ldots p harmonic respect each variable separately paper prove landau blochs theorem class p harmonic mappings unit ball mathbb mathbb form sum ldots ldots ldots cdots p k ldots p k where each p k ldots p k harmonic mathbb ldots ldots

Sh. Chen 1 ; S. Ponnusamy 2 ; X. Wang 1

1 Department of Mathematics Hunan Normal University Changsha, Hunan 410081 People's Republic of China
2 Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India
@article{10_4064_ap103_1_6,
     author = {Sh. Chen and S. Ponnusamy and X. Wang},
     title = {Landau's theorem for
  $p$-harmonic mappings in several  variables},
     journal = {Annales Polonici Mathematici},
     pages = {67--87},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2012},
     doi = {10.4064/ap103-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/}
}
TY  - JOUR
AU  - Sh. Chen
AU  - S. Ponnusamy
AU  - X. Wang
TI  - Landau's theorem for
  $p$-harmonic mappings in several  variables
JO  - Annales Polonici Mathematici
PY  - 2012
SP  - 67
EP  - 87
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/
DO  - 10.4064/ap103-1-6
LA  - en
ID  - 10_4064_ap103_1_6
ER  - 
%0 Journal Article
%A Sh. Chen
%A S. Ponnusamy
%A X. Wang
%T Landau's theorem for
  $p$-harmonic mappings in several  variables
%J Annales Polonici Mathematici
%D 2012
%P 67-87
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/
%R 10.4064/ap103-1-6
%G en
%F 10_4064_ap103_1_6
Sh. Chen; S. Ponnusamy; X. Wang. Landau's theorem for
  $p$-harmonic mappings in several  variables. Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 67-87. doi : 10.4064/ap103-1-6. http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-6/

Cité par Sources :