Compactness of composition operators acting on weighted Bergman–Orlicz spaces
Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 1-13
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize compact composition
operators acting on weighted Bergman–Orlicz spaces
\[
\mathcal{A}^{\psi}_\alpha
= \left\{f \in H(\mathbb D) : \int_{\mathbb D} \psi(| f(z)|)\,d A_\alpha(z) \infty\right \},
\]
where $\alpha > -1$ and $\psi$ is a strictly increasing,
subadditive convex function defined on $[0 , \infty)$ and
satisfying $\psi(0) = 0,$ the growth condition $\lim_{t \rightarrow \infty}\displaystyle \psi(t)/t = \infty $
and the $\Delta_2$-condition. In fact, we prove that $C_{\varphi}$
is compact on $\mathcal{A}^{\psi}_\alpha$ if and only if it is
compact on the weighted Bergman space $\mathcal{A}^{2}_{\alpha}.$
Keywords:
characterize compact composition operators acting weighted bergman orlicz spaces mathcal psi alpha mathbb int mathbb psi alpha infty right where alpha psi strictly increasing subadditive convex function defined infty satisfying psi growth condition lim rightarrow infty displaystyle psi infty delta condition prove varphi compact mathcal psi alpha only compact weighted bergman space mathcal alpha
Affiliations des auteurs :
Ajay K. Sharma 1 ; S. Ueki 2
@article{10_4064_ap103_1_1,
author = {Ajay K. Sharma and S. Ueki},
title = {Compactness of composition operators acting on weighted {Bergman{\textendash}Orlicz} spaces},
journal = {Annales Polonici Mathematici},
pages = {1--13},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2012},
doi = {10.4064/ap103-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-1/}
}
TY - JOUR AU - Ajay K. Sharma AU - S. Ueki TI - Compactness of composition operators acting on weighted Bergman–Orlicz spaces JO - Annales Polonici Mathematici PY - 2012 SP - 1 EP - 13 VL - 103 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-1/ DO - 10.4064/ap103-1-1 LA - en ID - 10_4064_ap103_1_1 ER -
%0 Journal Article %A Ajay K. Sharma %A S. Ueki %T Compactness of composition operators acting on weighted Bergman–Orlicz spaces %J Annales Polonici Mathematici %D 2012 %P 1-13 %V 103 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap103-1-1/ %R 10.4064/ap103-1-1 %G en %F 10_4064_ap103_1_1
Ajay K. Sharma; S. Ueki. Compactness of composition operators acting on weighted Bergman–Orlicz spaces. Annales Polonici Mathematici, Tome 103 (2012) no. 1, pp. 1-13. doi: 10.4064/ap103-1-1
Cité par Sources :