A note on Bierstone–Milman–Pawłucki's
paper “Composite differentiable functions”
Annales Polonici Mathematici, Tome 102 (2011) no. 3, pp. 293-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We demonstrate that the composite function theorems of Bierstone–Milman–Pawłucki and of Glaeser carry over to any polynomially bounded, o-minimal structure which admits smooth cell decomposition. Moreover, the assumptions of the o-minimal versions can be considerably relaxed compared with the classical analytic ones.
Mots-clés :
demonstrate composite function theorems bierstone milman paw ucki glaeser carry polynomially bounded o minimal structure which admits smooth cell decomposition moreover assumptions o minimal versions considerably relaxed compared classical analytic
Affiliations des auteurs :
Krzysztof Jan Nowak 1
@article{10_4064_ap102_3_8,
author = {Krzysztof Jan Nowak},
title = {A note on {Bierstone{\textendash}Milman{\textendash}Paw{\l}ucki's
} paper {{\textquotedblleft}Composite} differentiable functions{\textquotedblright}},
journal = {Annales Polonici Mathematici},
pages = {293--299},
publisher = {mathdoc},
volume = {102},
number = {3},
year = {2011},
doi = {10.4064/ap102-3-8},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-8/}
}
TY - JOUR AU - Krzysztof Jan Nowak TI - A note on Bierstone–Milman–Pawłucki's paper “Composite differentiable functions” JO - Annales Polonici Mathematici PY - 2011 SP - 293 EP - 299 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-8/ DO - 10.4064/ap102-3-8 LA - fr ID - 10_4064_ap102_3_8 ER -
%0 Journal Article %A Krzysztof Jan Nowak %T A note on Bierstone–Milman–Pawłucki's paper “Composite differentiable functions” %J Annales Polonici Mathematici %D 2011 %P 293-299 %V 102 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap102-3-8/ %R 10.4064/ap102-3-8 %G fr %F 10_4064_ap102_3_8
Krzysztof Jan Nowak. A note on Bierstone–Milman–Pawłucki's paper “Composite differentiable functions”. Annales Polonici Mathematici, Tome 102 (2011) no. 3, pp. 293-299. doi: 10.4064/ap102-3-8
Cité par Sources :